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Strong phase separation in a model of sedimenting lattices
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We study the steady state resulting from instabilities in crystals driven through a dissipative medium, for
instance, a colloidal crystal which is steadily sedimenting through a viscous fluid. The problem involves two
coupled fields, the density and the tilt; the latter describes the orientation of the mass tensor with respect to the
driving field. We map the problem to a one-dimensional lattice model with two coupled species of spins
evolving through conserved dynamics. In the steady state of this model each of the two species shows
macroscopic phase separation. This phase separation is robust and survives at all temperatures or noise
levels— hence the term strong phase separation. This sort of phase separation can be understood in terms of
barriers to remixing which grow with system size and result in a logarithmically slow approach to the steady
state. In a particular symmetric limit, it is shown that the condition of detailed balance holds with a Hamil-
tonian which has infinite-ranged interactions, even though the initial model has only local dynamics. The
long-ranged character of the interactions is responsible for phase separation, and for the fact that it persists at
all temperatures. Possible experimental tests of the phenomenon are discussed.

PACS numbd(s): 82.70.Dd, 05.40-a, 05.45-a

[. INTRODUCTION sets of Ising variables,o;} with states denoted by- and
— for the concentration relative to the mean, gng with
states denoted by / and for the tilt, on the sites of a

Sedimentation—the settling of heavier particles in aone-dimensional lattice. Analysis of this model leads to sev-
lighter fluid—is a rich source of intriguing physi¢4]. The eral interesting results, some published [B] and some
steadily sedimenting state arises, of course, from a balanaghich we present here.
between gravity and viscosity. Viscous damping in this non-
equilibrium steady state has important consequences: when a B. Update rules
given particle is slowed down by the fluid, its momentum
does not disappear, but produces disturbances in the quiﬁj]
which affect the motion of other particl¢g,3]. This makes
sedimentation a challenging problem in the statistical physic
of driven many-body systems.

In the general area of nonequilibrium steady states, muc
recent progress has come by stepping away from the diffi
culties of hydrodynamics and focusing instead on simpl
driven lattice-gas modelg4]. In fact, intimate connections
were discovered by two of the present authdwereafter LR
[5] between these models and the physics of sedimentin
crystalline suspensior(gs well as a closely related problem,
a flux-point lattice moving through a superconducting slab
The LR model was based on two crucial properties of col- W(+\———\+)=D+a,
lective settling discovered by Crowld$] in his theoretical
and experimental studies of hard spheres sedimenting in a
viscous medium(i) The magnitudeof the local settling ve-
locity of a region of the crystal depends onésncentration
i.e., on the particle number density in that region, @ndthe
direction of the local settling velocity depends on i, that

A. Background

Our results will be easier to understand after a quick sum-
ary of the update rules of the lattice model, which we turn
to next. This will also serve to underline the simple nature
and potentially wide applicability of the model. It is conve-
Bient to place thdo;} and {7} on two sublattices of our
ne-dimensional lattice; we label sites on the first sublattice
by integers, and those on the other by half-integers. A con-
efiguration is then a string,,0 73202 T5/203T7/504 - - . , SAY
[+\—/—/+\ ....Using the above notation for the states of
the two variables, and denoting the rate of an exchange pro-
Bess byW, the probabilities per unit time for the various
possible exchanges can be represented succinctly by

W(—\+—+\—-)=D—a,

W(—/+—+/—)=D"+a’,

is, the orientation, relative to the applied for(gravity) of W(+/———/+)=D"-a’,
the principal axes of the local particle distribution. These
effects, which also follow from symmetry arguments, were W(/+\—\+/)=E+b,

incorporated into a natural one-dimensional model for the

coupled, stochastic, local spin-exchange dynamics of two W\ +/—/+\)=E—b,
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where the first line, for example, represents the rate-ef  tensive(more properly, superextensiveharacter, which is
going to— + in the presence of a downtilt, and so on. The how our model and those ¢¥,8] manage to get around the
quantitiesD,E,D',E’ (all positive anda,b,a’,b" are all, in  usual obstaclegl1] to phase separation in one dimension. In
principle, independent parameters but we will argue belovour model E has a simple interpretation: it is the energy of a
that the case of physical interest and relevance to the sediollection of particles, viz. the’s, in a potential landscape
mentation and driven flux-lattice problems is sgn built from {r;_;,,}. The superextensivity is then a conse-

=sgna’, sgnb=sgnb’, and that the quantity which controls guence of having potential energy wells whose depths scale
the qualitative behavior of the model is then=sgn@b).  jth the system size.

We find two completely distinct kinds of behavior, depend-  Thermodynamic properties can be calculated in the

ing on whether is positive or negative. liv<0, the steady  srongly phase-separated state. In particular, the width of the

state of the model is a mixture of pluses and minuses, and Qe tacial region is found to vanish 50 and diverge as
uptilts and downtilts, which is statistically homogeneous on o

coarse-grained level. I&#>0, such a state isnstablewith (3) Strong phase separation is a robust phenomenon, and

respect to fluctuations which drive it to a strongly phase- ; o ! ’

separated state of a type defined and discussed below. eerS|sts even when the condition of detailed balance does not

refer to the casea<0 anda>0 as the stable and unstable Old.' Th_|s can be seen through argume[r&]sbased purely

LR (SLR and ULR models, respectively. on kinetics without recourse to an energy functlon:. the trans-
port of a + from one end of a+++ ...+ domain to a
point a distancen away requires a time which grows expo-

C. Strong phase separation: Summary of results nentially with n, asn moves against the tilt field would be
required. Thus a macroscopically phase-separated state
g/ould be expected to survive infinitely long in the infinite
size limit.

(4) Although phase separation is inevitable in the ULR
odel[5] and in the models df7,8], the kinetics of domain
rowth is anomalously slow. The barriers that oppose the
mixing of the macroscopically segregated state also inhibit

The focus of this paper is the study of phase separatio
phenomena of a new and unusual sort, in the unstable L
(ULR) model of sedimenting colloidal crystals described
above. Following the appearance of the LR model, the samg
type of phase separation was shown to od@irin a three-
species permutation-symmetric model on a one-dimension

L?E:(C:ﬁ r:gv;th bzerréoirc d:g;rs]daagmcc:;:g'g?/nesrlsi(\;vr:tgf ?K;g;'cs the processes of diffusion that cause large domains to grow
y 9 P ) at the expense of smaller ones. These barriers, moreover, are

A further generalization which breaks the permutation sym- : ;
metry between the three species was studid@jnThe un- produced by the dynamics of the model, not introduegd

derlving mechanism of phase separation appears robust amne chinain the form of quenched randomness. This results in
simylegenou h that it I’T?I ht be v[\)/orth Iook?np for in otheri riguing aging effects: for instance, the growth of domains

P 9n 9 9 is logarithmic in time, as has been verified in numerical stud-
systems. Here is a summary of our results.

(1) In the present context, phase separation involves thies in[7]. Further, in the detailed-balance limit, the decrease

of E({oj,7i_1}) is logarithmic in time as well. Thus, de-
spontaneous formation of macroscopic domainst+ofand : -y : o L
~ as well as /and in the ULR mode[5] . This segregation spite theexistenceof a thermodynamic equilibrium state in

: . ) : the detailed-balance limit, a system which starts from a ran-
is robust in that it survives at all temperaturied et us recall Y

that most statistical systems which show phase separation dom initial condition has an extraordinarily difficult time
low T (or low noise level, in nonequilibrium casé8,10) aching it. Such a system is best thought of as perpetually

: ; : .’ .. evolving, never in a truly steady state, sinking slowly into
lose this propgrty 'at higheF or noise strengths. Certgmly if 0progressively deeper minima, in a manner which recalls the
one were to think in terms of energy and entropy, this woul

) : ; lassy state of the model $12].
be the general expectation. Against this backdrop, a phas% : : .
separation so robust as to persistadlt finite T, and in a (5) Arguments given ir}5] already amounted to showing

one-dimensional system at that, is quite unexpected. We suﬂ-]at SPS occurred in the ULR model. Specifically, it was

) Zhown there that the remixing of phase-separated domains
gﬁztn’g]riennaome strong phase separal@iJ for this unusual would alwaysbe opposed by barriers whose height diverged

The importance of SPS in the ULR model arises from th with the system size. The simulation resultq 8, however,

close relation of the latter to a physically realizable system o ere complicated by the presence of a repulsion between
considerable current interest pnailmel ysedimentin ycolloid djacent + sites, which modeled interactions between

» hamely, g harged colloidal particles. Increasing this repulsion beyond
crystals. Towards the end of this paper we suggest experlz

. L ' threshold value led, in the numerical studie§%if to an
ments which can be perform.ed on fluidized bgds (.)f COIIOIdaapparent loss of phase separation. It is now clear, from the
crystals to test some of the ideas presented in this work.

(2) The occurrence of SPS can be seen best in a Certac:alculations reported in the present paper, that the observed

limit in which the dynamics of the ULR model obeys the Wemmng [5] was a finite-size effect.

condition of detailed balance. In this limit, an energy func- _

tion E can be constructed such that the steady-state probabil- D. Outline

ity of a configuration {o;,7;_4} is proportional to The rest of this paper is organized as follows. In Sec. I,
exd —E({o;,7_1,2/T)]. Although the dynamics is entirely we review the derivatiof5] of continuum equations of mo-
local and involves rates of order unity, the emergent energgion for a crystalline array moving through a dissipative me-
function E for the effective equilibrium theory involves in- dium, and show how, at the linearized level, they lead to
teractions of unbounded range. As a resktlfias a nonex- either a new class of “kinematic waveg13] or an instabil-
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ity towards phase separation. Section Il closes by presentingork on scales>/, treating the colloidal crystal or flux

a simplified one-dimensional continuum model which retaingattice as a permeable elastic continuum whose distortions at
all the essential features of the higher-dimensional problenpoint r and timet are described by théEulerian displace-

In Sec. lll, we use arguments similar to those connecting thenent fieldu(r,t). In general, the equation of motion in the
noisy Burgers equation to the driven diffusive lattice f@ls  completely overdamped limit has the form velocity

to construct the LR lattice-gas modg5] whose long- =mobility X force, i.e.,

wavelength limit has the relevant physics of the aforemen-

tionegl on_e-dimensional_ co_nti_nuum equations. We show, in a ﬁ u=m(VU)(KVVu+F+f). @)
certain highly symmetric limit, that the unstable LR model at

has a detailed balance property. In this limit we demonstrate ] ] ] )
strong phase separation and calculate thermodynamic qualft EG- (2), the first term in parentheses on the right-hand side
tities. Further, we give arguments to show that SPS occurs iffPresents elastic forces, governed by the elastic teiigor
the entire parameter range of the ULR model. We argue thdf'® S€condk) is the applied forcégravity for the colloidal
the coarsening of domains in the ULR model is ultraslow,crystal and the Lorentz force for the flux latficendf is a
with a characteristic length scale growing logarithmically in "0iSe source of thermal and/or hydrodynamic origin. Note
time. An analysis of a continuum model for SPS is the subhat in the absence of the driving foréethe linearized dy-

ject of Sec. IV. Section V summarizes our results and sugh@mics of the displacement field in this overdamped system
gests experiments to test our predictions. is purelydiffusive d;u~ V?2u, with the scale of the diffusivi-

ties set by the product of a mobility and an elastic constant.
All the important physics in these equations, when the driv-
ing force is nonzero, lies i, the local mobility tensor,

which we have allowed to depend on gradients of the local
A. Motivation displacement field. The reason for this is as follows: The

The LR lattice-gas mode]5] arose as a simplified de- 9aMPing in the physical situations we have mentioned above
scription of the dynamics of a crystal moving steadily 211S€S from the interaction of the moving particles with the
through a dissipative medium. It is therefore useful to reviewMedium. A dynamical friction of this kind will, in general,
the construction of the continuum equations of motion fordepend on the.IocaI a”angeme”t of parti¢i&a5]. Even for“
such a system. There are at least two physical situation@ Perfect, undistorted lattice, the symmetry of the mobility
where this dynamical problem arise$) the steadily sedi- ensor will thus reflect the symmetry of the underlying lat-
menting colloidal crystal mentioned abov@) a flux-point tice. If the structure in a given region is distorted relative to

lattice moving through a thin slab of type I superconductor.the perfect lattice, the '003' ’.“Ob"'ty will depart from its
under the action of the Lorentz force due to an applied curideal structure as well. Deviations of the structure from the

rent. In(ii), the dissipation comes both from the normal corePe'fect crystal are described by the full distortion tergar

of the vortices and from disturbances in the order-parameter6l rather than its symmetric part, the strain, since we are
and electromagnetic fields in the region around the vorticed]0t in @ rotation-invariant situation. We further make the
There is, in principle, an important difference between thereasonablg agsumpt|qn th"’,‘t the mobility can be expanded in a
sedimentation and moving flux-lattice problems: in thePOWer series in the distortion:
former, the disturbances produced by the moving crystal are
carried to arbitrarily large length scales by the long-ranged
hydrodynamic interaction, while in the latter, both electro- . : . .
. . where pg is the mean macroscopic mobility of the undis-
magnetic and order-parameter disturbances are screened %ae d crvstal
are thus limited to a finite range. A complete analysis of the = sz d'. ional tal dri teadilv al th
sedimentation dynamics of a three-dimensional CO”Oidaldire&Eoﬁ é\slsTJ?nr;zg)?saotr(c:)rgj i?1 thz\fg)-sd?rze?;ic?n:lrll%” €
crystal thus requires the inclusion of the hydrodynamic ve- ' 2
locity field as a dynamical variable. Instead, we consider arfuPspace normal g butnot underz— —z, Egs.(2) and(3)
experimental geometry in which a thin slab of colloidal crys-'€ad directly to
tal (with interparticle spacing”> particle sizé is confined
to a container with dimensionk,,L,>L,~/ (gravity is up =N1dU; + N,V u,+O(VVU) +O(VuVu) +f,
along —2). The local hydrodynamics that leads to the (48
configuration-dependent mobiliti¢g,5] is left unaffected by .
this, but the long-ranged hydrodynamic interaction is Uz=A3V. .U +A4d,U,+O(VVU)+O(VuVu)+f,,
screened in thgz plane on scales L by the no-slip bound- (4b)
ary condition at the walls. The model equati¢dsin dimen-
siond=2 apply to such a system.

II. CONTINUUM DYNAMICAL MODEL FOR A MOVING
CRYSTAL

M(VU)=po+AVU+O((VU)?), ()

where the constant drift alonghas been removed by shift-
ing to the mean rest frame of the crystal. The terms that are
manifestly most important at small wave numbers, at least
within a linear description, are the linear, first-order space
Our construction of the equations of motion ignores iner-derivative terms. These terms arise from E@$.and(3) via
tial terms, which is justified both for the confined colloidal the leading distortion dependence of the mobility tensor,
crystal and, except at very low temperaturg4], for the flux ~ multiplied by the driving forcd-. The coefficients,; [as well
lattice. Rather than keeping track of individual particles, weas those of th©(VuVu) terms, as can be seen from E2)

B. Constructing the equations
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and (3)] are thus proportional té, and the corresponding The remainder of this paper is directed towards a more
terms are therefore present only in the driven state. At smallletailed understanding of the statistical mechanics and dy-
enough wave numberss(F/K whereF is the magnitude of namics of macroscopic clumping. Our studies are based
the driving force density an& a typical elastic constapt mainly on the simplified one-dimensional lattice model of
these terms dominate the diffusive terms coming from thé5]. The construction of the lattice model is reviewed in Sec.
elasticity. The terms of this type in E¢4a) tell us that a tilt  IlI: its origins lie in a reduced, one-dimensional version of
(a z derivative of al displacement or & derivative of az  equationg4) which we now present.

displacementleads to a lateral drift, and those in Edb)

imply that the vertical settling speed depends on the com- D. A one-dimensional effective model

pression(or dilation). Since the system is not invariant under hat th . f ion f .
rotations, there are no grounds for insisting that=\, or | We saw a.bO\éIGt att efequatlor}s o mlot|on orfa moving
N3=\4. f is a spatiotemporally white noise source contain- attice contained terms of a qualitatively new form, not
ing the effects of thermal fluctuations as well as chaotic mopresent in the equations of a Iatpce at equmpnum. To linear
tion due to the hydrodynamic interactiph7,18. The reader ordgr, these were t.hg‘i} terms in Eq.(4), wh|ch.are pro-
will note that the form of the diffusive second derivative portional to the driving force, and of lower order in gradients

terms and the distortion dependence of the mobility beyonihan those arising from the elasticity of the crystal. The ef-

linear order has been left rather general. This is because ev cts of the Illnear _mstablllty fop\z)\3<0 thu; cannot be

for d=2, as can be seen by exhaustive listing, symmetry. itigated b'y'mcludmg the d|ffu3|ve terms arising from the

underx—'>—x Uy— — U, permits, all told, in Eqs(élla) and inear elasticity. To see what final state, if any, emerges from
1 X X ) ’

(4b), ten terms(this counting was wrong ifi5]) bilinear in the initial unstable growth in the ca3g\;<<0, we must go

Vu and six linear second derivative terms, with as mam})eyond a linear treatment. Even in the stable dage,>0,

independent coefficients. It is clearly difficult to make very f[he combined effects of nonlinearities and noise could result

useful general statements about a problem with so many phgq_hgfLegt_lf\f/e dlspﬁtrstl_on Irellattlﬁn.s ;or Iopg—w?;]/elength dr_nct)déas
nomenological parameters so we restrict ourselves, in thr? ICh ditfer qualitatively In their form from those predicte

next subsection, to a linearized description to lowest order i y ithr? I'r?ga: tiheory. vl\-/!ovrver\T/]err,kln dCliLridtlr?g nrOT/|ilneal'ltI%S, d,'[]: N
gradients. We will return to the effects of nonlinearities in fusion a 0IS€, as we remarke € previous subsection,

- troduce an enormous number of phenomenological param-
later subsections. n . . .
eters. We note instead that the important new physics of Eq.
(4), namely, the wavelikéstable caseor growing modes
C. Mode structure (unstable cagearises from the coupling of the vertical and
If we retain only terms linear in the fields and work only horizontal displacement fields, for excitations with wave-

to leading order in wave number, then the relation betweeNECtOr transverseto the direction of mean drift, while the

frequencyw and wave vectok implied by Eq.(4) is modes yvith wave vectors alongplay a relatively minor .
role. This suggests that much can be learned from a model in
-1 one space dimension, the direction, corresponding to the

w=—7"[(A+ Ak~ VM= N0)?KE+4NNGKT]. (B) | direction of Eq.(4), but retaining awo-component dis-
placement fieldu=(uy,u,). The symmetryx— —Xx,u,—

. . . . . —u, then yields, to bilinear order in fields and leading orders
The dispersion relatioit5) has a wavelike character in all gradients, the equations of motion

directions ifA o)A 3>0. Fora,A3<0, while it is still wavelike

for k, =0, it has a growing modex —ik for k,<k, . Uy = N 20U, + 134U dyU,+ Dy d2u, + fy, (6a)
Linearly stable case—kinematic wavethe wavelike

modes are the generalization, to the case of a moving lattice, : _ 2 2 2

of the kinemati?: waves which Lighthill and Whithalff?3] U= N3dxUxt ¥2(dxUx) “+ ¥3(dxU,) "+ Dadiu, + 4, )

discussed in the context of traffic flow and flood movements.

The important difference in the present case is that the waveghich have, in addition to thé\;}, three nonlinear coupling

propagate not only along, but also transverse, to the directiogarameterq y;} (also proportional to the driving forcg),

of drift. Some remarks towards a more complete consideryyg diffusivities {D;}, and Gaussian spatiotemporally white

ation of their dispersion relation, including the effects of noise sourced;, i=x,z, with zero mean, and variances

nonlinearities, may be found in the context of a one-y N :

dimensional reduced model |B].

Linearly unstable case—clumpintn the casex,\;<0, (fi(0,0)fj(x,t)>=2Ni5ij5(X)5(t). (7)
for wave vectors pointing outside a cone around zleis,
the system is linearly unstable, as already notgd]nsmall  If {y;}, {D;}, and{f;} are set to zero, we recover the con-

perturbations grow, with a growth rate which ligear in  tinuum limit of the equation derived by Crowl¢g] for the
their wave number. Whereas the linearized treatment cannatynamics of the small transverse and longitudinal displace-
give detailed information about the final state of the systemments of a collection of hard spheres of radajgrepared

we expect the growing mode to appear as a clumping anahitially in a horizontal, one-dimensional periodic array with
tilting of the colloidal crystal, with material concentrated at spacingd, settling vertically in a highly viscous fluid, with
the bottoms of the tilted regions. The wave vector of thethe hydrodynamic interaction cut off at the nearest neighbor
inhomogeneity will be mainly normal to the sedimenting di- scale. The correspondencenis= —\3= —(3/4)a/d, in units
rection. of the Stokes settling speed of an isolated sphere. Crowley’s
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calculation can be extended beyond linear order to iyg, ~ simple evolution rules which mimic the coupled dynamics of
but the elastic forces and the thermal fluctuations that givéhe density and tilt fields. This coupled-spin problem is too
the D;’s andf;’s are absent in his model. The diffusion and difficult to solve for the dynamics or, indeed, for the steady
nonlinear terms in Eq6) are identical in structure to those state for arbitrary values of parameters. However, for the
in the ErtasKardar(EK) models for the fluctuations of drift- symmetric case of half filling of both species, and a special
ing lines [19,20, with u,,u, replaced by their variables relation between coupling constants, we sh@ec. Ill) that
h, ,hyin [19] or R, ,R) in [20]. The EK models, however, the condition of detailed balance is satisfied with respect to a
as a result of a larger symmetfindependentlyunder (i) x Hamiltonian H with long-ranged interactions. In turn, this
——x and(ii) R, =—R, orh, ——h,] lack the linear first allows for a characterization of the steady state of the sys-
spatial derivative terméhe \; termsg of Eq. (6). Such linear tem. In Sec. IlIC, we show that at zero temperatlire¢he
terms can, however, be induced through the nonlinear termsystem exhibits phase separation. Moreover, we calculate
in [19,2Q by constraining the ends of the lirjpolymen to  thermodynamic properties and show that the phase separa-
be at fixed mean separation normal to the drift direction, sdion survives atll finite temperatures, which is why we call
that (R, /9x)#0. The related coupled-interface model of this phenomenon SPS. The occurrence of SPS is linked to
Barabai [21] has anx— —x symmetry and thus also lacks the long (actually infinitg range of the interactions ifi,
the\; terms of Eq(6). These models are thus not relevant towhich results in the energy being superextengigeopor-
the case of greatest interest to us here, namely, the unstaiienal toL? rather tharL). We emphasize that this happens
casen,\3<0 of Eq.(6). although the underlying dynamical model is entirely local,
In the unstable case, within a linear treatment, the concerwith finite, bounded rates. In Sec. IlID, we show that this
tration d,u, and the tilt ,u, grow without bound[22]. unusually robust phase separation sets in anomalously
Physically, since real colloidal crystals are made of impen-slowly, with domain sizes growing as the logarithm of time.
etrable particles, and since the elasticity of the lattice will notThe survival of SPS away from the detailed-balance limit is
tolerate arbitrarily large shear strains, the description implicidiscussed through a kinetic interpretation in Sec. Il E.
in Eq. (6) of small distortions about a perfect lattice must
break down in conditions of unstable growth. It is best,
therefore, to work from the outset with naturally bounded
variables for the concentration and tilt. To this end, we first From the study of driven diffusive systems, it is well
pass to a description in terms of the concentration fluctuatioknown that hydrodynamic behavior can be recovered from
field the large-distance long-time behavior of simple lattice-gas
models evolving by stochastic dynam[&S]. An example of
o) = % ®) such a model is the asymmetric exclusion process, in which
' X particles on a lattice perform biased random walks subject to
o the constraint of no more than one particle per site; in the
and the filt field limit of large separations and time, density fluctuations are
described by the Burgers equation with an additional noise
au, . e
(X,t)= —. (9)  term. An advantage of a lattice-gas description is that non-
X linearities are incorporated implicitly in the nature of the
variable—for instance, a (0,1)-valued occupation variable
incorporates the effects of exclusion.
Are there simple lattice-gas models which capture the es-
(108 sential features of coupled density-tilt dynamics of the type
discussed in the previous section? Any such lattice model
must, of course, involve two sets of variables—$ay} and
{r;}—which are discrete versions of density and tilt fields
and which evolve by rules which mimic the physics of sedi-

As stated aboveg and 7 should be bounded: what matters menting lattices. There are two crucial features of the

on large length scales is only whether the local concentratiodynamics of Eq(10): first, that botho and 7 fields are con-

is large or small compared to the mean, and whether thaerved so that their time derivatives involve the divergences
local tilt is “up” or “down.” Accordingly, we construct a of currents; and second that the local field which guides the
description in the next section in which the concentration and” CU'Tent has a term which is proportional to and vice

tilt fields of Eq. (10) are replaced by Ising variables evolving Versa Accordingly, we defing5] a lattice model which in-
under a spin-exchange dynamics designed to mimic the mogprporates just these effects. Consujer a one—dlmensmpal lat-
important aspects of Eq10). A continuum model which {icé made of two interpenetrating sublatticeS (i

incorporates saturation is presented in Sec. IV. =1,23....N) andT (i=1/2,3/Z ... N—1/2). Place Ising
variableso;=*1 at every site of§ andr; ,1,=*1 on ev-

ery site ofT. We takeo;=1 if there is a particle at site and
o;=—1 if there is no particle, whiler;=1 or —1 denotes
the two possible values of the local tilt. The dynamics in-
In this section, we introduce the notion of strong phasevolves exchange of adjacent spias and o, at a rate
separation in connection with the LR lattice model, whichwhich depends on the intervening spin ,,,, while the rate
describes two coupled species of spins on a lattice, witlof 7-spin exchanges depends on the interveringpin, i.e.,

A. The LR lattice model

Then Eq.(6) can be rewritten in the “conservation-law”
form

0=Npdy T+ y10y(0T) + D 1020+ d,fy,

T=N30x0+ Y20y(02) + y30,(72) + D a2 7+ dyf,.
(10b)

Ill. STRONG PHASE SEPARATION IN A LATTICE
MODEL
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we have KawasaKi24] dynamics, with hopping rates which B’
depend on the local value of the other species. The probabil-

ity P(C) that the system is in a configuratio®

=({oi},{7i_u2) evolves through the master equation

dP(C) /
——= > W(Cpn:1—C)P(Cpns1) A A
dt (n,n+1)

_W(C_)Cn,n-%—l)P(C)- (11)

Here (n,n+1) on the right hand side (with n
=1/2,1,3/2,2. . .) labels transitions which involve pairwise
interchanges of neighboringr’'s (o< 0oi,4) and 7's
(7i—12 Ti+1/2), and configurationC,, ., differs from C FIG. 1. The phase-separated state of the 1D lattice modEl at
only through the interchange of spins on siteandn+1. =0 is shown.c and 7 variables are shown as circles and squares,
The most general such model would involve the eight dis+tespectively, witho,7=+1 (—1) shown filled(empty. The con-
tinct transition rates listed in Eq1). For a left-right sym-  figuration of the corresponding height model is also shown. Inter-
metric system, we havB=D’; a=a’; sgn{p)=sgnp’): faces betweew=+1 and—1 are located af andA’, and those
this defines the LR modéb)]. betweenr=+1 and—1 are atB andB’.

In the interest of defining aninimal versionof the LR
model, we also impose the further restrictioBs=E’, b
=b’. The rates of the minimal model may be written com-
pactly as

B
gogogooOooOocteneCeeeCeNONSNONONONOBONORORONRO

(14)

m| o
O o

ar .1 SinceE,D >0, itis clear that Eq(14) is a special case of f[he
W(oj— 041, Tis12) =D — '2 (01— 0i1), unstableLR model. V\/.e-show pelow that when f:onqmons
(13) and(14) are met, it is possible to find a Hamiltonig
such that the condition of detailed balance is satisfied with
invariant measure exp(8H).
Since the motion of particles is determined by the local
tilt =, we may think of thes particles as moving in a poten-

The evolution rules can be stated as followsa i positive,  tial landscape provided by thés (Fig. 1). With this in mind,
a particle tends to move downhill, and a hole uphillblfs e define the height at siteby

positive, a local peak/{) tends to transform into a valley

(\/) if a particle resides on it, while local valleys tend to k

become peaks in the presence Qf holes. Changing the signs of h 7= 2 Ti—112- (15)

a andb reverses these tendencies. As a result, the nature of =1

the steady state is sensitive to the sigreefab. As we will

see below, ifa is positive, the exchanges ofandr spinsin ~ With periodic boundary conditions ofy+i= 0 ; 7n+i-12

Eq. (12) act in concert to promote segregation of both spe—=7i_152), the zero-net-tilt conditionM ,=0 implies hy.

cies of spins, ultimately resulting in a phase-separated states h,. We associate a potential energy proportionahjo,

This is the unstable case of the LR model—the case of priwith site k, and write the Hamiltonian

mary interest in this paper. By contrast df is negative,

“easy” o and 7 moves produce opposing tendencies, and N

hence result in a fluctuating but on-average spatially homo- H=e€, hdrioy (16)

geneous state—the stable case of the LR model. The calcu- k=1

lations of Crowley[6] for settling arrays of hydrodynami- ) ) _

cally interacting spheres and the discussiori5h make it ~ t0 describe the total energy of the particles in the land-

clear that for sedimenting colloidal crystals it is the “un- Scape derived from the particles. _

stable” case that applies. In view of the symmetric role played hy's and’s in the
The other important parameters in the model are the magsymmetric model, we may equally ask for the potential en-

netizationsM ,=3a;/N, M,=3;7,,1,,/N, both of which  ergy of 7 particles in the landscape provided by ttnepar-

are conserved by the dynamics. ticles. The corresponding Hamiltonian is then

bo;
W(Ti _100 Tiy10:07) =E+ TI(Ti—llz_ Tiv12). (12)

N

g= fgl Ok- 1A 0} k112 (17)

B. Symmetric case: Hamiltonian and detailed balance

We now consider theymmetric casef the LR model,
which is defined by the vanishing of the magnetizations

where the heighg is given b
M,=M,=0, (13 ang s gven by

k
zér(;d(trlfze;.followmg relationship between coupling constants in gk”’z{(r}:;l a;. (18)
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When the height$, andg,_ 1, are written out in terms of
7's and gy's, respectively, the Hamiltonian® and G are
seen to involve very nonlocal couplings:

N  k
H=€>, D Tj_10%, (19

k=1 j=1

N k-1
G=€2, 2 0iT_1pn- (20)

k=2 j=1

We observe that

H+G=eM M, (21

and, since each o1, and M, vanishes in the symmetric

case owing to the zero-tilt condition, we hake= —G. Thus

the Hamiltonians corresponding to the two pictures, ice.,

particles in a7 landscape orwice versaare completely
equivalent. We will mostly usé{ for further work.

We now show that the steady state of the symmetri
model defined by Eq$13) and(14) satisfies the condition of
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In order for the measure to be valid under interchanges of
adjacentr’'s (7,_1o¢> 7,1 1/2), Similar reasoning leads to the
condition

_1|
ﬂf—zn

E+b
E-b

. (28

In the symmetric case of the LR model, E4) holds, and
so Egs.(27) and (28) are consistent. Thus the condition of
detailed balance holds with the equilibrium meas(2®.

It is appropriate to recall that the three-species model of
Evanset al.[7] also obeys the condition of detailed balance
in the symmetric case. There too the Hamiltonian has infinite
ranged interactions, but does not have as transparent an in-
terpretation as Eq16).

C. Symmetric case: Thermodynamic properties
and strong phase separation

Since the condition of detailed balance holds in the sym-

dnetric case of the minimal LR model, the steady state cor-

responds to the thermal equilibrium state with Hamiltonian

detailed balance and that the stationary measure is given Hy- The thermodynamic properties of the system can be

e~ A" whereg is the inverse temperatufie %, with Be given

by Eq.(27) below. To this end, let us ask for the changes in

energy AE(oy—0o;,41) of H when spinso; and o, are
interchanged, andAE(7_1<— 7112 In H when spins
T _1pand ;. » are interchanged. For= N, it is straightfor-
ward to see that

AE(0j<0i 1) = €Ty 10— T4 1), (22)

AEB(7i_1o7iv1) = €0i(Ti—1o Tiv 1) (23
In fact, Egs.(22) and(23) are valid fori=N as well, as can
be verified on recalling thatry, =01, 7 1= 712 @nd
using the zero-tilt condition ,=M =0 while computing
energy changes.

Consider the configuratioﬁ(,i - obtained from a con-

figuration C on exchanging two neighboring spins—an

elementary kinetic move in the model. The condition of de-

tailed balance is then

W(C—C
W(C,, .,

MSiczri '”i+l)

=T aedC) 24

Ty ,0 ¢ l)

7~

+

found, in principle, using equilibrium statistical mechanics.
A calculation can be carried out in the grand canonical en-
semble in the limiN—co. The resulting state exhibits strong
phase separation.

The HamiltonianH [Eq. (16)] describes spingr, in a
site-dependent magnetic fietth, , which is itself a dynami-
cal variable. Equivalently, in the lattice-gas descriptjas-
sociating an occupation variable,=1/2(1+ ¢})], it de-
scribes particles with a hard core constraint in a potential
well of depth eh,. The ground state of{ is obtained by
arranging ther spins(which determine the heights) so as
to form as deep a potential well as possible, and then arrang-
ing the o particles at the bottom of the welFig. 1). A spin
configuration which corresponds to this choice is

Tk—1/2— —1 for k= 1, e ,N/2
N
=1 for k=§+1,...,N,

o=1 for k=N/4,... ,N/4
=—1 for k=1,... N/4-1

and k=3N/4+1,... N. (29

where us{C) is the steady-state measure for configuration

C. To verify that

wusd C)=e FHO), (25
we use Eqgs(12) and(22) to obtain
D—aX;
orax ¢ 29
1

where we have defined, =1/27;, 1,5(o;— o+ 1). Noting that
X;=*1, we see that Eq26) is satisfied provided

1
,8625“'1

D+a
D—a/’

(27)

Each spin species exhibits complete phase separation in this
ground state. The ground state energy is straightforward to
compute, and we find

eN?

Notice the quadratic dependence B on N, which is an
outcome of the infinite-ranged interactionsh[Eq. (30)].

As explained below, this unusual superextensive behavior of
the energy is ultimately the feature responsible for the phe-
nomenon of strong phase separation, namely the continued
existence and stability of the phase-separated state at all fi-
nite temperatures.
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Each of these factorizes into single-site partition functions,
and can be evaluated straightforwardly. Recalling th%t
varies linearly withk near theT=0 interface locatiorky,

we find
A A
Za= || (1+e 2Belk—kaly, (34)
keRp
In the thermodynamic limit, we obtain
. Zy=K(e P9, (35)

HOOOO0O0e000e000e0eeNeONGNSBONONONOROOORONO

FIG. 2. Typical configurations of the unstable LR modelTat where K(y)EHff:,w(lnLy'k') is a generating function that
#0 are shown. The meaning of the symbols is as in Fig. 1. Phasgrises in the theory of partitiong5]. Evidently, each of
separation persists, but there are particle-hole excitations of bOtZB, Za , andZg, equals the same quantity as well, so that
species near the corresponding interfaces. Z={K[exp(—2,86)]}4.

It is worth pausing to comment on the unusual size de-

At T=0, phase separation is complete and there is a shafpendences of various quantities. The ground state ertesgy
boundary between regions of positive and negative spins a§ proportional toN?, a superextensive dependence. This has
each species. LeA and A’ be the locations of th&=0 its origin in the infinite-ranged interactions K. Further,
interface between regions with=1 ando=—1, and letB  with energies measured from the ground state value, the par-
andB’ be the locations of interfaces separating regions witHition function approaches aN-independent limit. Thus the
r=1 andr=—1 (Fig. 1). The effect of raising the tempera- total change in free energy and entropy away from0
ture to a finite valueT is to smear out the interfacial zones remain finite in the thermodynamic limit, i.e., they are not
aroundA, A’, B, andB’ (Fig. 2. To address this quantita- extensive. This reflects the fact that the only effect of raising
tively, let us turn to the evaluation of thermodynamic prop-the temperature is to broaden the interfacial region between

erties. phases, which essentially affects only a finite number of
The calculation can be carried out most easily in a grangites.
ensemble in which the total magnetizatiads, and M , are In fact, an explicit calculation of the broadened interfacial

not held fixed. The corresponding grand partition function isprofile can be carried out in the grand ensemble. For in-
stance, neaA we have

— 0
/= E e AH-Eg) = Z e*BEE hk(vk*aﬁ), (31) (o) =tanhBehy, (36)

{o}h {7} a7 X . :
tonn whereh,=(k—k,). We see thato,) deviates substantially

from 1 only in a region whergBeh,|<1, or

where a(k’ denotes the value af, in the ground state. The

key observation that allows the calculation to be performed [k—Kka|<T/e. (37)

is that near ther interfacesA and A’, the fieldh,({7}) is ) o _
essentially fixed at itF =0 valueh®; deviations are of order FOr sitesk such thatk—kx|>T/e, the deviation from+ 1 is

ex — BeN/4] as explained below, and so are utterly negli-~2€XP(-2Belk—k,|) which vanishes rapidly. We see that
gible in the thermodynamic limit. Likewise, in the vicinity of the primary effect of temperature is to smear out the inter-
the 7 interfacesB andB’, the o spins are frozen to theif faceg._'l_'he formatlo_n of “droplets” far from the mterf_a_ces is
=0 values, and sgk({a})zgﬁ. To proceed, let us divide prohibitively co;tly in energy, and hence the prpbablllty dies
the system into four equal pams,, Rg, Ra, Rg, where down exponentially. Recalling that the separation of the two

region R, consists of theN/4 spins of each of the two spe- 7~ 1~ ~1 interfaces isN/2, in the thermodynamic limit

cies centered aroundl. Other regions are defined similarly, I\l|—>oo,t wtehsgetth?t or;ljy a vtanf|sh|ng frlact|on t())ft sp_(lttiso;se
centered around, A’, and B’. Evidently, with negligible close to the interfacgsleviate from values arbitrarily close

. . to 1 and—1. In this sense, phase separation remains com-
error we may seh,({7})=h? in regionsR, andR,., and ’ T .
setgk({a})=g(k’ in regionsRg andRg, . The partition func- plete and cannot be effaced at any finite temperatuiiee.,

. . we have strong phase separation.
tion Z can then be written as.the product of four terms These results obtained in the grand ensemble provide a
Zpn, Zg, Zar, Zg', Where, for instance,

qualitative, if not quantitative, guide to the thermodynamic
properties of the system in whidfl . andM _ are held fixed.
o o The customary equivalence between ensembles is not obvi-
Zp= E e*ﬁsz; G (32 ously valid any longer, as particle-hole excitations are essen-
lo} e tially confined to a finite region of width proportional T
which does not increase &— . Thus the difference be-
tween observables calculated in the two ensembles is ex-
Ze=>, e—ﬁssz O /A Tkt 12~ Ty 179 (33 pecteq to remain of qrder unity, and not die out in t_kl'e
& <Rs —oo limit [26]. Interestingly, the calculation of the partition
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function, though not the profile, has been carried out for the
three-species model within a constant-species-number en-
semble[7].
The stability of the strongly phase-separated state can also B
be understood in terms of kinetics. In the ground state ar-

rangement of Fig. 1, eachr spin finds itself in a uniform B
field produced by the spins. Consider moving a spin over a \
macroscopic distance—sayoa= +1 spin fromA’ to A, via B B

B. The movement fronA’ to B may be viewed as an acti- (a) ()
vation process as the spin in question has to overcome a . . . .
potential barrier of magnitudeN/4 to reachB; beyond that, FIG. 3. Typical configurations are depicted away from the sym-
in the regionBA, the motion is ballistic as the-induced metric case in the limit of vanishing nois@) If the fraction of o
field helps it along. The rate-limiting step is thus th¢ = +1 and7=+1 spins is low enough, interfacés’ andB coin-
B activation. At temperaturg, the relevant time scale is de-(b) If the fraction ofo=+1 spins is high enough, the inter-
of the order oft.~ exp(eN/4T) which diverges rapidly as 268’ lies halfway betweerh andA’.
N—oo. Thus, in the thermodynamic limit, a rearrangement of S .

long-ranged Hamiltonian; nevertheless we will argue below

the SPS state is not possible; the only effect of the . o .
. SON : that the system continues to exhibit strong phase separation.
temperature-assisted motion is to move a few 1 spins

near the interface into the= — 1 rich region and vice versa, Itis useful to definex andy as the density of up spins of

but such penetration does not proceed far in view of thethe o and r types. We havex=1/2(1+M,/N) andy

. X - . =1/2(1+M_IN). If x andy are small enough thatx2ty
restoring fields. Defining the penetration de@k as that g . A .
over which the activation time falls by a factor ofelive <1, the steady state is of the type shown in Fig) 3with

estimateAk=T/e, in agreement with Eq(37) which was each of thes and r species showing phase separation, but

. . : . with basically no spatial overlap of the=1 andr=1 re-
based on the spatial decay of the interfacial profile. gions. A useful way to characterize this state is through the

sequence of interfaces, viA---B’---BA’---, where- - -

denotes a macroscopic stretch of the system. HgiB)

separates an up-spin region®fr) spins on the right, from
Now imagine that F|g 1 repl’esenthdlf the SyStem, and the Corresponding down_spin regionsi whilé andB’ sepa-

that the other half was identical in structure. This WOUldrate the Opposite regionsl Trial states of the type

amount to a system that had phase-separatedfootomac-  A...B’...B...A’-.. are seen to approach the nonoverlap-

roscopic domains, each of sidé8. For this state to proceed ping state on a time scale of ordgrwhere Int* is less than

towards full phase separation, the two domains, each at pyt of the order of the smaller &Nx/T and eNy/T. Once

the bott(_)m of a valley, must merge. The rate-limiting steppe nonoverlapping steady state has been reached =

can again be taken to be the movement ef &rom the edge  spins can still be cycled around by activation processes

of an all — + region to the top of a hill, i.e., a distan®¥8.  acrossA’A andA’A, respectively(Fig. 3), but such cycling

Once this comes to pass, the two domains of ledfthwill  around does not change the character of the state.

rapidly merge to give one domain of lengitr2. The time Now consider increasiny, keepingx fixed. The number

for thiS, which is the time for Complete phase Separation forof Spins in the stretch betwedi andA is N(l_x_y), and

a system of sizé\, can be seen from the argument in Sec.once this drops belowix, the predominant activation pro-

I11 C to scale as exp{\/8T). This tells us that the character- cess occurs over this stretch. Thus the no-overlap state of

istic domain size grows |Ogarithmica||y in time, as stated |nF|g 3(a) is unstable towards a state of the type shown in F|g

Sec. I. 3(b), once X+y exceeds unity. In this steady state, activa-

The time required for the reverse procef®m a two-  tjon processes in a finite system lead to small currents of
domain to a four-domain statescales as~exd(N/4T)],  andr spins, of magnitude

which is overwhelmingly larger than the—42 coarsening

D. Coarsening

time. This is true at all scales, and the transition from a Jy=asexp —e/pg IT)—a,exp(— €/ arg' IT), (38
2n-domain state to one with domains is much more rapid

than the reverse. Thus the transition from a statistically ho- J,=agexp—e/galT)—azsexp— e/ galT), (39
mogeneously mixed state to the equilibrium phase-separated

state is irreversible, even though it occurs slowly. wherea, ,a,,a3,8,4 are prefactors of order unity anthg: is

The Coarsening process was Studjé]jboth numerica”y the Separation of interface& and B’, and other/’s are
in the 3-species model and within a mean-field approximadefined similarly. Since the differencé, g —/ s’ is posi-
tion for a related “toy” model. The typical domain size was tive and grows proportionally tbl, we may drop the second
found to grow logarithmically in time. The arguments given term on the right of Eq(38). In steady state we must have
above are consistent with this. J,=J;, which then leads to &;+a,) exp(—€e/ ap /T)

=azexp(—e/ galT) or
E. Nonsymmetric case / g = ga+terms of order unity. (40

We now address the nature of the steady state for arbitrary
values ofM , andM .. Away fromM =M =0 the problem Thus,A is very close to the halfway position in stretBiB’.
is no longer described in terms of the equilibrium state of aThe overlapping stretclBA’ is a fraction §=1/2(2x+y
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—1) of the whole length. On setting=y=1/2, we recover wherex is measured in units of the lattice spacing and is
5=1/4 in agreement with the results of the equilibrium hence dimensionless. The partition function is then
analysis of Sec. IIl C. Jldo][d7]exp(—=F/T). S o
Analogously, keeping fixed and increasing we con- Then the usual, purely dissipativesonserving time-
clude that for %+x>1, the steady state is dependent szburg Landau equations of motion generated
A---B---A"--.B’--- with B’ betweenA’ and A and an by Eq.(41), i.e.,
overlapping stretch of length M2y +x—1). Finally, un-
der x—(1—x), y—(1-y) we arrive at the condition for
overlap of negative spins.
In short, strong phase separation persists even away fro

oF
o= A(ra)z( % /s (42)

rz%1nd likewise forr, turn out to be precisely

the symmetric point of the LR model. In general, two types o=A (T2 tanh Lo+ edyr) + 7, ;
of steady states, both phase separated, are possible as de- )
picted in Fig. 3. In the overlapping case, there is generally a d7=A (Toy tanh *7— edyo) + 7, (43

current in a finite system, but this vanishes exponentially|_|ereA A_ are mobilities and are noise SoUrces
with system size. While we have explored the effects of de§/vith va?ie’mcres roportional to th@aézgres onding mobilities
viating from the symmetric case by moving away from the brop P 9 )

half-filling condition Eq.(13), without altering the condition I IS e\gdlgnFtth?t Eqs(4|f) ?ﬂd(.:éo) ?]E.e '?.egt'iajl\m thf I_|n-
(14) on the rates, another way to make the system nonsyme;axze Trl1r'm [T we ma:j et tehl an : 'ﬁa o Zt_bl Uf.’ 't3_f E
metric is to violate the latter condition. We have not explored _/* 7€ IS corresponds 1o the linearly unstable imit ot £q.

this in detail, but expect that the phenomenon of SPS wilf&’ in consonance with the fact that the detailed balance

persist in this case also so long as>0 imit of the lattice model was derived in precisely that case.

We should thus be able to gain some insight into SPS by
looking at the steady states of E¢23). The simplest of these
IV. DETAILED BALANCE AND STRONG PHASE are the zero current states, which satisfy

SEPARATION IN THE CONTINUUM LIMIT J,P—tanhQ=0,

The continuum model of Sec. Il, in the casg\3<<0 in
Eq. (6), is linearly unstable. One way to deal with this insta-
bility is to resort, as we have done above, to a lattice mode},yere
in which the variables are naturally bounded. An alternative Q=tanh 1¢, P=tanh ly. (45)
way is to ask what nonlinear terms added to Eg). for
AoA3<0 would arrest the unstable growfd2]. To do this,
we work in the detailed-balance limit of the lattice model,
start with the Hamiltonian(16), and construct the corre- E(P,Q)= In(coshP coshQ). (46)
sponding continuum Ginzburg-Landau free-energy func-_ o ,
tional. We shall see below that this functional will give rise ThiS leads to closed orbits in te—Q or ¢— ¢ plane, i.e.,
to dynamical equations with the same linear instability as if€9ions of largey and small¢ followed by the opposite.
Eq. (6) with A\,A5<0, but containing nonlinearities which These are spatially multldomaln states which will not evolve
prevent unbounded growth. further in the absence of noise.

The derivation is straightforward, as the condition of de-
tailed balance allows us to proceed as in any equilibrium
statistical mechanics problem. The Ginzburg-Landau free- A. Summary
energy functionaF[ o, 7] for our system, i.e., the effective
Hamiltonian for a description in terms of the coarse-grainedm
fields {a(x),7(x)} of Sec. Il D, may be written abl — TS,
where U is the energy(16) in the continuum limit, T the
temperature, an8the entropy obtained by summing over all
microscopic configurationgo; , 7;} subject to a fixed coarse-
grained configuratiofo(x),7(x)}. Sinces; and r; are Ising
variables,S can be found from a standard Bragg-Williams
construction. Thus,

3,Q+tanhP=0, (44)

The spatial development oP andQ with respect tox is like
a Hamiltonian dynamics, conserving the “energy”

V. SUMMARY AND DISCUSSION

In summary, we have constructed continuum and lattice
odels to describe the physics of steadily sedimenting col-
loidal crystals or, more generally, of a crystal driven through
a dissipative medium. The models display two broadly dis-
tinct types of behavior, termed “stable” and “unstable,”
depending on the sign of a parameter. We have concentrated
on the unstable case and shown, through a mapping to a
one-dimensional lattice model, thatalwaysdisplays phase
separation, a phenomenon which we call strong phase sepa-
ration. This phase separation and the fact that it persists at all
. . temperatures can b_e understoqd, in genera_ll, in terms of bar-
Flo,7]= éf de dx’ o(x) 7(x") riers to remixing which grow with system size. The b_arrlers

0 0 are erected by the system in the course of its evolution, and
. 14m 14m result in <_j0main_ si;es growing as the logarithm .o.f the time.
+Tf ax S In In a _partlcular I|r_n|t, the detailed bala_mc_e cqndl_tlon holds_,
0 m=7(x),0(x) 2 2 allowing us to write the steady state distribution in the equi-
librium form exp(pBH), and to calculate density profiles
1-m 1—m} (41) exactly. HereH involves long-ranged interactions even

I
2 : 2 though the model has strictly local dynamics. This long-

+
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ranged character of interactions  is responsible for the length scales. In a polycrystalline sample, if the size of the
phase separation in this one-dimensional system, and the fa@tystallites is too small, terms from the elastic energy in Eq.

that it persists at all temperatures. (4) could dominate instead. In addition, it is important that
the sedimentation be steady, a requirement best met by
B. Experimental tests working in the fluidized-bed geometry in which the particles

) o ) constituting the crystal are on average at rest in the labora-
_ Finally, let us turn to the possibility of testing our results 51y frame of reference, and the fluid flows vertically up-
in experiments. We have demonstrated strong phase sepaigards past them. We would recommend starting with the
tion in a one-dimensionamodel system. It seems highly syspension in the fully sedimented state, and then switching
likely, therefore, that the same phenomenon will take placg), the upward flow. Observations if28] suggest that
in the experimental systems which inspired our modelgiongly charge-stabilized crystalline suspensions appear
namely, steadily sedimenting crystalline suspensions in, fogtaple whereas suspensions in a fluid state display the Crow-
example, the two-dimensional geometry described in Sec. |ey instability in a visible manner. We suspect that the insta-
A good candidate system is a charge-stabilized crystallingjjity js present even in the crystalline suspensions, but is
array of.polystyrgne spheres with radius in the MICron rang€masked either by finite crystallite size or by the logarithmi-
The lattice spacing of the crystal should be neither so larggaly siow coarsening of domains. We predict that careful
that hydrodynamic effectéproportional to the ratio of par-  measurements of the time evolution of the static structure
ticle size to interparticle spacipgre negligible, nor so small t5ctor, using particle-imaging or ultrasmall-angle scattering
that the flow is choked. This will ensure that appreciableiechniques, should reveal a weak large-scale modulation of
hydrodynamic flow takes place between the spheres, givinghe particle concentration, with characteristic wave vector

rise to the strain-dependent mobilitig that are used in Eq.  normal to the sedimentation direction and decreasing loga-
(4). If the system parameters are as[Y], the Reynolds rithmically in time.

number will be negligible, as required by our neglect of in-
ertia, and the Peclet number large. Note that our model equa-
tions(4) were formulated to describe the nature of distortions
about a single crystalline domain. In particular, the instabil- We are grateful to Deepak Dhar and Ramakrishna Ra-
ity towards clumping takes place only on large enoughmaswamy for useful discussions.
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