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Strong phase separation in a model of sedimenting lattices
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We study the steady state resulting from instabilities in crystals driven through a dissipative medium, for
instance, a colloidal crystal which is steadily sedimenting through a viscous fluid. The problem involves two
coupled fields, the density and the tilt; the latter describes the orientation of the mass tensor with respect to the
driving field. We map the problem to a one-dimensional lattice model with two coupled species of spins
evolving through conserved dynamics. In the steady state of this model each of the two species shows
macroscopic phase separation. This phase separation is robust and survives at all temperatures or noise
levels— hence the term strong phase separation. This sort of phase separation can be understood in terms of
barriers to remixing which grow with system size and result in a logarithmically slow approach to the steady
state. In a particular symmetric limit, it is shown that the condition of detailed balance holds with a Hamil-
tonian which has infinite-ranged interactions, even though the initial model has only local dynamics. The
long-ranged character of the interactions is responsible for phase separation, and for the fact that it persists at
all temperatures. Possible experimental tests of the phenomenon are discussed.

PACS number~s!: 82.70.Dd, 05.40.2a, 05.45.2a
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I. INTRODUCTION

A. Background

Sedimentation—the settling of heavier particles in
lighter fluid—is a rich source of intriguing physics@1#. The
steadily sedimenting state arises, of course, from a bala
between gravity and viscosity. Viscous damping in this no
equilibrium steady state has important consequences: wh
given particle is slowed down by the fluid, its momentu
does not disappear, but produces disturbances in the
which affect the motion of other particles@2,3#. This makes
sedimentation a challenging problem in the statistical phy
of driven many-body systems.

In the general area of nonequilibrium steady states, m
recent progress has come by stepping away from the d
culties of hydrodynamics and focusing instead on sim
driven lattice-gas models@4#. In fact, intimate connections
were discovered by two of the present authors~hereafter LR!
@5# between these models and the physics of sedimen
crystalline suspensions~as well as a closely related problem
a flux-point lattice moving through a superconducting sla!.
The LR model was based on two crucial properties of c
lective settling discovered by Crowley@6# in his theoretical
and experimental studies of hard spheres sedimenting
viscous medium:~i! The magnitudeof the local settling ve-
locity of a region of the crystal depends on itsconcentration,
i.e., on the particle number density in that region, and~ii ! the
directionof the local settling velocity depends on itstilt , that
is, the orientation, relative to the applied force~gravity! of
the principal axes of the local particle distribution. The
effects, which also follow from symmetry arguments, we
incorporated into a natural one-dimensional model for
coupled, stochastic, local spin-exchange dynamics of
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sets of Ising variables,$s i% with states denoted by1 and
2 for the concentration relative to the mean, and$t i% with
states denoted by / and\ for the tilt, on the sitesi of a
one-dimensional lattice. Analysis of this model leads to s
eral interesting results, some published in@5# and some
which we present here.

B. Update rules

Our results will be easier to understand after a quick su
mary of the update rules of the lattice model, which we tu
to next. This will also serve to underline the simple natu
and potentially wide applicability of the model. It is conve
nient to place the$s i% and $t i% on two sublattices of our
one-dimensional lattice; we label sites on the first sublat
by integers, and those on the other by half-integers. A c
figuration is then a stringt1/2s1t3/2s2t5/2s3t7/2s4 . . . , say
/1\2/2/1\ . . . . Using the above notation for the states
the two variables, and denoting the rate of an exchange
cess byW, the probabilities per unit time for the variou
possible exchanges can be represented succinctly by

W~1\2→2\1 !5D1a,

W~2\1→1\2 !5D2a,

W~2/1→1/2 !5D81a8,

W~1/2→2/1 !5D82a8,

W~ /1\→\1/ !5E1b,

W~\1/→/1\ !5E2b,

W~\2/→/2\ !5E81b8,

W~ /2\→\2/ !5E82b8, ~1!
1648 ©2000 The American Physical Society
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PRE 61 1649STRONG PHASE SEPARATION IN A MODEL OF . . .
where the first line, for example, represents the rate of12
going to21 in the presence of a downtilt\, and so on. The
quantitiesD,E,D8,E8 ~all positive! anda,b,a8,b8 are all, in
principle, independent parameters but we will argue be
that the case of physical interest and relevance to the s
mentation and driven flux-lattice problems is sgna
5sgna8, sgnb5sgnb8, and that the quantity which control
the qualitative behavior of the model is thena5sgn(ab).
We find two completely distinct kinds of behavior, depen
ing on whethera is positive or negative. Ifa,0, the steady
state of the model is a mixture of pluses and minuses, an
uptilts and downtilts, which is statistically homogeneous o
coarse-grained level. Ifa.0, such a state isunstablewith
respect to fluctuations which drive it to a strongly pha
separated state of a type defined and discussed below
refer to the casesa,0 anda.0 as the stable and unstab
LR ~SLR and ULR! models, respectively.

C. Strong phase separation: Summary of results

The focus of this paper is the study of phase separa
phenomena of a new and unusual sort, in the unstable
~ULR! model of sedimenting colloidal crystals describ
above. Following the appearance of the LR model, the sa
type of phase separation was shown to occur@7# in a three-
species permutation-symmetric model on a one-dimensi
lattice with periodic boundary conditions, with dynami
which may be regarded as a simplified version of that in@5#.
A further generalization which breaks the permutation sy
metry between the three species was studied in@8#. The un-
derlying mechanism of phase separation appears robust
simple enough that it might be worth looking for in oth
systems. Here is a summary of our results.

~1! In the present context, phase separation involves
spontaneous formation of macroscopic domains of1 and
2 as well as / and\ in the ULR model@5# . This segregation
is robust in that it survives at all temperaturesT. Let us recall
that most statistical systems which show phase separatio
low T ~or low noise level, in nonequilibrium cases@9,10#!
lose this property at higherT or noise strengths. Certainly i
one were to think in terms of energy and entropy, this wo
be the general expectation. Against this backdrop, a ph
separation so robust as to persist atall finite T, and in a
one-dimensional system at that, is quite unexpected. We
gest the name strong phase separation~SPS! for this unusual
phenomenon.

The importance of SPS in the ULR model arises from
close relation of the latter to a physically realizable system
considerable current interest, namely, sedimenting collo
crystals. Towards the end of this paper we suggest exp
ments which can be performed on fluidized beds of colloi
crystals to test some of the ideas presented in this work

~2! The occurrence of SPS can be seen best in a ce
limit in which the dynamics of the ULR model obeys th
condition of detailed balance. In this limit, an energy fun
tion E can be constructed such that the steady-state prob
ity of a configuration $s i ,t i 21/2% is proportional to
exp@2E($si ,ti21/2%/T)#. Although the dynamics is entirely
local and involves rates of order unity, the emergent ene
function E for the effective equilibrium theory involves in
teractions of unbounded range. As a result,E has a nonex-
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tensive~more properly, superextensive! character, which is
how our model and those of@7,8# manage to get around th
usual obstacles@11# to phase separation in one dimension.
our model,E has a simple interpretation: it is the energy o
collection of particles, viz. thes i ’s, in a potential landscape
built from $t i 21/2%. The superextensivity is then a cons
quence of having potential energy wells whose depths s
with the system size.

Thermodynamic properties can be calculated in
strongly phase-separated state. In particular, the width of
interfacial region is found to vanish asT→0 and diverge as
T→`.

~3! Strong phase separation is a robust phenomenon,
persists even when the condition of detailed balance does
hold. This can be seen through arguments@5# based purely
on kinetics without recourse to an energy function: the tra
port of a 1 from one end of a111 . . . 1 domain to a
point a distancen away requires a time which grows expo
nentially with n, asn moves against the tilt field would b
required. Thus a macroscopically phase-separated s
would be expected to survive infinitely long in the infini
size limit.

~4! Although phase separation is inevitable in the UL
model@5# and in the models of@7,8#, the kinetics of domain
growth is anomalously slow. The barriers that oppose
remixing of the macroscopically segregated state also inh
the processes of diffusion that cause large domains to g
at the expense of smaller ones. These barriers, moreover
produced by the dynamics of the model, not introducedex
machinain the form of quenched randomness. This results
intriguing aging effects: for instance, the growth of domain
is logarithmic in time, as has been verified in numerical stu
ies in @7#. Further, in the detailed-balance limit, the decrea
of E($s i ,t i 21/2%) is logarithmic in time as well. Thus, de
spite theexistenceof a thermodynamic equilibrium state i
the detailed-balance limit, a system which starts from a r
dom initial condition has an extraordinarily difficult tim
reaching it. Such a system is best thought of as perpetu
evolving, never in a truly steady state, sinking slowly in
progressively deeper minima, in a manner which recalls
glassy state of the model of@12#.

~5! Arguments given in@5# already amounted to showin
that SPS occurred in the ULR model. Specifically, it w
shown there that the remixing of phase-separated dom
would alwaysbe opposed by barriers whose height diverg
with the system size. The simulation results of@5#, however,
were complicated by the presence of a repulsion betw
adjacent 1 sites, which modeled interactions betwe
charged colloidal particles. Increasing this repulsion beyo
a threshold value led, in the numerical studies of@5#, to an
apparent loss of phase separation. It is now clear, from
calculations reported in the present paper, that the obse
remixing @5# was a finite-size effect.

D. Outline

The rest of this paper is organized as follows. In Sec.
we review the derivation@5# of continuum equations of mo
tion for a crystalline array moving through a dissipative m
dium, and show how, at the linearized level, they lead
either a new class of ‘‘kinematic waves’’@13# or an instabil-
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1650 PRE 61RANGAN LAHIRI, MUSTANSIR BARMA, AND SRIRAM RAMASWAMY
ity towards phase separation. Section II closes by presen
a simplified one-dimensional continuum model which reta
all the essential features of the higher-dimensional probl
In Sec. III, we use arguments similar to those connecting
noisy Burgers equation to the driven diffusive lattice gas@4#
to construct the LR lattice-gas model@5# whose long-
wavelength limit has the relevant physics of the aforem
tioned one-dimensional continuum equations. We show,
certain highly symmetric limit, that the unstable LR mod
has a detailed balance property. In this limit we demonst
strong phase separation and calculate thermodynamic q
tities. Further, we give arguments to show that SPS occur
the entire parameter range of the ULR model. We argue
the coarsening of domains in the ULR model is ultraslo
with a characteristic length scale growing logarithmically
time. An analysis of a continuum model for SPS is the s
ject of Sec. IV. Section V summarizes our results and s
gests experiments to test our predictions.

II. CONTINUUM DYNAMICAL MODEL FOR A MOVING
CRYSTAL

A. Motivation

The LR lattice-gas model@5# arose as a simplified de
scription of the dynamics of a crystal moving stead
through a dissipative medium. It is therefore useful to revi
the construction of the continuum equations of motion
such a system. There are at least two physical situat
where this dynamical problem arises:~i! the steadily sedi-
menting colloidal crystal mentioned above;~ii ! a flux-point
lattice moving through a thin slab of type II superconduc
under the action of the Lorentz force due to an applied c
rent. In~ii !, the dissipation comes both from the normal co
of the vortices and from disturbances in the order-param
and electromagnetic fields in the region around the vortic
There is, in principle, an important difference between
sedimentation and moving flux-lattice problems: in t
former, the disturbances produced by the moving crystal
carried to arbitrarily large length scales by the long-rang
hydrodynamic interaction, while in the latter, both electr
magnetic and order-parameter disturbances are screene
are thus limited to a finite range. A complete analysis of
sedimentation dynamics of a three-dimensional colloi
crystal thus requires the inclusion of the hydrodynamic
locity field as a dynamical variable. Instead, we consider
experimental geometry in which a thin slab of colloidal cry
tal ~with interparticle spacingl @ particle size! is confined
to a container with dimensionsLx ,Lz@Ly;l ~gravity is
along 2 ẑ). The local hydrodynamics that leads to th
configuration-dependent mobilities@6,5# is left unaffected by
this, but the long-ranged hydrodynamic interaction
screened in thexz plane on scales@Ly by the no-slip bound-
ary condition at the walls. The model equations~4! in dimen-
sion d52 apply to such a system.

B. Constructing the equations

Our construction of the equations of motion ignores in
tial terms, which is justified both for the confined colloid
crystal and, except at very low temperatures@14#, for the flux
lattice. Rather than keeping track of individual particles,
ng
s
.
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work on scales@l , treating the colloidal crystal or flux
lattice as a permeable elastic continuum whose distortion
point r and timet are described by the~Eulerian! displace-
ment fieldu(r ,t). In general, the equation of motion in th
completely overdamped limit has the form veloci
5mobility 3 force, i.e.,

]

]t
u5m~¹u!~K¹¹u1F1f!. ~2!

In Eq. ~2!, the first term in parentheses on the right-hand s
represents elastic forces, governed by the elastic tensoK ,
the second (F) is the applied force~gravity for the colloidal
crystal and the Lorentz force for the flux lattice!, and f is a
noise source of thermal and/or hydrodynamic origin. No
that in the absence of the driving forceF the linearized dy-
namics of the displacement field in this overdamped sys
is purelydiffusive: ] tu;¹2u, with the scale of the diffusivi-
ties set by the product of a mobility and an elastic consta
All the important physics in these equations, when the dr
ing force is nonzero, lies inm, the local mobility tensor,
which we have allowed to depend on gradients of the lo
displacement field. The reason for this is as follows: T
damping in the physical situations we have mentioned ab
arises from the interaction of the moving particles with t
medium. A dynamical friction of this kind will, in general
depend on the local arrangement of particles@6,15#. Even for
a perfect, undistorted lattice, the symmetry of the mobil
tensor will thus reflect the symmetry of the underlying la
tice. If the structure in a given region is distorted relative
the perfect lattice, the local mobility will depart from it
ideal structure as well. Deviations of the structure from t
perfect crystal are described by the full distortion tensor¹u
@16# rather than its symmetric part, the strain, since we
not in a rotation-invariant situation. We further make t
reasonable assumption that the mobility can be expanded
power series in the distortion:

m~“u!5m01A¹u1O„~“u!2
…, ~3!

where m0 is the mean macroscopic mobility of the undi
torted crystal.

For a d-dimensional crystal driven steadily along thez
direction, assuming isotropy in the (d21)-dimensional ‘‘' ’’
subspace normal toẑ, but not underz→2z, Eqs.~2! and~3!
lead directly to

u̇'5l1]zu'1l2“'uz1O~““u!1O~“u“u!1f' ,
~4a!

u̇z5l3“' .u'1l4]zuz1O~““u!1O~“u“u!1 f z ,
~4b!

where the constant drift alongz has been removed by shift
ing to the mean rest frame of the crystal. The terms that
manifestly most important at small wave numbers, at le
within a linear description, are the linear, first-order spa
derivative terms. These terms arise from Eqs.~2! and~3! via
the leading distortion dependence of the mobility tens
multiplied by the driving forceF. The coefficientsl i @as well
as those of theO(“u“u) terms, as can be seen from Eq.~2!
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PRE 61 1651STRONG PHASE SEPARATION IN A MODEL OF . . .
and ~3!# are thus proportional toF, and the corresponding
terms are therefore present only in the driven state. At sm
enough wave numbers (&F/K whereF is the magnitude of
the driving force density andK a typical elastic constant!,
these terms dominate the diffusive terms coming from
elasticity. The terms of this type in Eq.~4a! tell us that a tilt
~a z derivative of a' displacement or a' derivative of az
displacement! leads to a lateral drift, and those in Eq.~4b!
imply that the vertical settling speed depends on the co
pression~or dilation!. Since the system is not invariant und
rotations, there are no grounds for insisting thatl15l2 or
l35l4 . f is a spatiotemporally white noise source conta
ing the effects of thermal fluctuations as well as chaotic m
tion due to the hydrodynamic interaction@17,18#. The reader
will note that the form of the diffusive second derivativ
terms and the distortion dependence of the mobility bey
linear order has been left rather general. This is because
for d52, as can be seen by exhaustive listing, symme
under x→2x,ux→2ux permits, all told, in Eqs.~4a! and
~4b!, ten terms~this counting was wrong in@5#! bilinear in
¹u and six linear second derivative terms, with as ma
independent coefficients. It is clearly difficult to make ve
useful general statements about a problem with so many
nomenological parameters so we restrict ourselves, in
next subsection, to a linearized description to lowest orde
gradients. We will return to the effects of nonlinearities
later subsections.

C. Mode structure

If we retain only terms linear in the fields and work on
to leading order in wave number, then the relation betw
frequencyv and wave vectork implied by Eq.~4! is

v5
21

2
@~l11l4!kz6A~l12l4!2kz

214l2l3k'
2 #. ~5!

The dispersion relation~5! has a wavelike character in a
directions ifl2l3.0. Forl2l3,0, while it is still wavelike
for k'50, it has a growing modev}2 ik for kz!k' .

Linearly stable case—kinematic waves. The wavelike
modes are the generalization, to the case of a moving lat
of the kinematic waves which Lighthill and Whitham@13#
discussed in the context of traffic flow and flood movemen
The important difference in the present case is that the wa
propagate not only along, but also transverse, to the direc
of drift. Some remarks towards a more complete consid
ation of their dispersion relation, including the effects
nonlinearities, may be found in the context of a on
dimensional reduced model in@5#.

Linearly unstable case—clumping. In the casel2l3,0,
for wave vectors pointing outside a cone around thez axis,
the system is linearly unstable, as already noted in@5#: small
perturbations grow, with a growth rate which islinear in
their wave number. Whereas the linearized treatment ca
give detailed information about the final state of the syste
we expect the growing mode to appear as a clumping
tilting of the colloidal crystal, with material concentrated
the bottoms of the tilted regions. The wave vector of t
inhomogeneity will be mainly normal to the sedimenting d
rection.
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The remainder of this paper is directed towards a m
detailed understanding of the statistical mechanics and
namics of macroscopic clumping. Our studies are ba
mainly on the simplified one-dimensional lattice model
@5#. The construction of the lattice model is reviewed in S
III: its origins lie in a reduced, one-dimensional version
equations~4! which we now present.

D. A one-dimensional effective model

We saw above that the equations of motion for a mov
lattice contained terms of a qualitatively new form, n
present in the equations of a lattice at equilibrium. To line
order, these were the$l i% terms in Eq.~4!, which are pro-
portional to the driving force, and of lower order in gradien
than those arising from the elasticity of the crystal. The
fects of the linear instability forl2l3,0 thus cannot be
mitigated by including the diffusive terms arising from th
linear elasticity. To see what final state, if any, emerges fr
the initial unstable growth in the casel2l3,0, we must go
beyond a linear treatment. Even in the stable casel2l3.0,
the combined effects of nonlinearities and noise could re
in effective dispersion relations for long-wavelength mod
which differ qualitatively in their form from those predicte
by the linear theory. However, including nonlinearities, d
fusion and noise, as we remarked in the previous subsec
introduce an enormous number of phenomenological par
eters. We note instead that the important new physics of
~4!, namely, the wavelike~stable case! or growing modes
~unstable case!, arises from the coupling of the vertical an
horizontal displacement fields, for excitations with wav
vector transverseto the direction of mean drift, while the
modes with wave vectors alongz play a relatively minor
role. This suggests that much can be learned from a mod
one space dimension, thex direction, corresponding to the
' direction of Eq.~4!, but retaining atwo-component dis-
placement fieldu5(ux ,uz). The symmetryx→2x,ux→
2ux then yields, to bilinear order in fields and leading orde
in gradients, the equations of motion

u̇x5l2]xuz1g1]xux]xuz1D1]x
2ux1 f x, ~6a!

u̇z5l3]xux1g2~]xux!
21g3~]xuz!

21D2]x
2uz1 f z ,

~6b!

which have, in addition to the$l i%, three nonlinear coupling
parameters$g i% ~also proportional to the driving forceF),
two diffusivities $Di%, and Gaussian spatiotemporally whi
noise sourcesf i , i 5x,z, with zero mean, and variance
Nx ,Nz :

^ f i~0,0! f j~x,t !&52Nid i j d~x!d~ t !. ~7!

If $g i%, $Di%, and $ f i% are set to zero, we recover the co
tinuum limit of the equation derived by Crowley@6# for the
dynamics of the small transverse and longitudinal displa
ments of a collection of hard spheres of radiusa, prepared
initially in a horizontal, one-dimensional periodic array wi
spacingd, settling vertically in a highly viscous fluid, with
the hydrodynamic interaction cut off at the nearest neigh
scale. The correspondence isl252l352(3/4)a/d, in units
of the Stokes settling speed of an isolated sphere. Crowl
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calculation can be extended beyond linear order to give$g i%,
but the elastic forces and the thermal fluctuations that g
the Di ’s and f i ’s are absent in his model. The diffusion an
nonlinear terms in Eq.~6! are identical in structure to thos
in the Ertas¸-Kardar~EK! models for the fluctuations of drift
ing lines @19,20#, with ux ,uz replaced by their variable
h' ,huu in @19# or R' ,Ruu in @20#. The EK models, however
as a result of a larger symmetry@independentlyunder~i! x
→2x and~ii ! R'→2R' or h'→2h'] lack the linear first
spatial derivative terms~thel i terms! of Eq. ~6!. Such linear
terms can, however, be induced through the nonlinear te
in @19,20# by constraining the ends of the line~polymer! to
be at fixed mean separation normal to the drift direction,
that ^]R' /]x&Þ0. The related coupled-interface model
Barabási @21# has anx→2x symmetry and thus also lack
thel i terms of Eq.~6!. These models are thus not relevant
the case of greatest interest to us here, namely, the uns
casel2l3,0 of Eq. ~6!.

In the unstable case, within a linear treatment, the conc
tration ]xux and the tilt ]xuz grow without bound@22#.
Physically, since real colloidal crystals are made of imp
etrable particles, and since the elasticity of the lattice will n
tolerate arbitrarily large shear strains, the description impl
in Eq. ~6! of small distortions about a perfect lattice mu
break down in conditions of unstable growth. It is be
therefore, to work from the outset with naturally bound
variables for the concentration and tilt. To this end, we fi
pass to a description in terms of the concentration fluctua
field

s~x,t !5
]ux

]x
~8!

and the tilt field

t~x,t !5
]uz

]x
. ~9!

Then Eq. ~6! can be rewritten in the ‘‘conservation-law
form

ṡ5l2]xt1g1]x~st!1D1]x
2s1]xf x , ~10a!

ṫ5l3]xs1g2]x~s2!1g3]x~t2!1D2]x
2t1]xf z .

~10b!

As stated above,s and t should be bounded; what matte
on large length scales is only whether the local concentra
is large or small compared to the mean, and whether
local tilt is ‘‘up’’ or ‘‘down.’’ Accordingly, we construct a
description in the next section in which the concentration a
tilt fields of Eq.~10! are replaced by Ising variables evolvin
under a spin-exchange dynamics designed to mimic the m
important aspects of Eq.~10!. A continuum model which
incorporates saturation is presented in Sec. IV.

III. STRONG PHASE SEPARATION IN A LATTICE
MODEL

In this section, we introduce the notion of strong pha
separation in connection with the LR lattice model, whi
describes two coupled species of spins on a lattice, w
e
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simple evolution rules which mimic the coupled dynamics
the density and tilt fields. This coupled-spin problem is t
difficult to solve for the dynamics or, indeed, for the stea
state for arbitrary values of parameters. However, for
symmetric case of half filling of both species, and a spec
relation between coupling constants, we show~Sec. III! that
the condition of detailed balance is satisfied with respect
Hamiltonian H with long-ranged interactions. In turn, thi
allows for a characterization of the steady state of the s
tem. In Sec. III C, we show that at zero temperatureT, the
system exhibits phase separation. Moreover, we calcu
thermodynamic properties and show that the phase sep
tion survives atall finite temperatures, which is why we ca
this phenomenon SPS. The occurrence of SPS is linke
the long ~actually infinite! range of the interactions inH,
which results in the energy being superextensive~propor-
tional to L2 rather thanL). We emphasize that this happen
although the underlying dynamical model is entirely loc
with finite, bounded rates. In Sec. III D, we show that th
unusually robust phase separation sets in anomalo
slowly, with domain sizes growing as the logarithm of tim
The survival of SPS away from the detailed-balance limit
discussed through a kinetic interpretation in Sec. III E.

A. The LR lattice model

From the study of driven diffusive systems, it is we
known that hydrodynamic behavior can be recovered fr
the large-distance long-time behavior of simple lattice-g
models evolving by stochastic dynamics@23#. An example of
such a model is the asymmetric exclusion process, in wh
particles on a lattice perform biased random walks subjec
the constraint of no more than one particle per site; in
limit of large separations and time, density fluctuations
described by the Burgers equation with an additional no
term. An advantage of a lattice-gas description is that n
linearities are incorporated implicitly in the nature of th
variable—for instance, a (0,1)-valued occupation varia
incorporates the effects of exclusion.

Are there simple lattice-gas models which capture the
sential features of coupled density-tilt dynamics of the ty
discussed in the previous section? Any such lattice mo
must, of course, involve two sets of variables—say$s i% and
$t i%—which are discrete versions of density and tilt fiel
and which evolve by rules which mimic the physics of se
menting lattices. There are two crucial features of thes-t
dynamics of Eq.~10!: first, that boths andt fields are con-
served so that their time derivatives involve the divergen
of currents; and second that the local field which guides
s current has a term which is proportional tot, and vice
versa. Accordingly, we define@5# a lattice model which in-
corporates just these effects. Consider a one-dimensiona
tice made of two interpenetrating sublatticesS ( i
51,2,3, . . . ,N) andT ( i 51/2,3/2, . . . ,N21/2). Place Ising
variabless i561 at every site ofS, andt i 11/2561 on ev-
ery site ofT. We takes i51 if there is a particle at sitei, and
s i521 if there is no particle, whilet i51 or 21 denotes
the two possible values of the local tilt. The dynamics
volves exchange of adjacent spinss i and s i 11 at a rate
which depends on the intervening spint i 11/2, while the rate
of t-spin exchanges depends on the intervenings spin, i.e.,
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we have Kawasaki@24# dynamics, with hopping rates whic
depend on the local value of the other species. The proba
ity P(C) that the system is in a configurationC
[($s i%,$t i 21/2%) evolves through the master equation

dP~C!

dt
5 (

^n,n11&
W~Cn,n11→C!P~Cn,n11!

2W~C→Cn,n11!P~C!. ~11!

Here ^n,n11& on the right hand side ~with n
51/2,1,3/2,2, . . . ) labels transitions which involve pairwis
interchanges of neighborings ’s (s i↔s i 11) and t ’s
(t i 21/2↔t i 11/2), and configurationCn,n11 differs from C
only through the interchange of spins on siten and n11.
The most general such model would involve the eight d
tinct transition rates listed in Eq.~1!. For a left-right sym-
metric system, we haveD5D8; a5a8; sgn(b)5sgn(b8):
this defines the LR model@5#.

In the interest of defining aminimal versionof the LR
model, we also impose the further restrictionsE5E8, b
5b8. The rates of the minimal model may be written com
pactly as

W~s i↔s i 11 ;t i 11/2!5D2
at i 11/2

2
~s i2s i 11!,

W~t i 21/2↔t i 11/2;s i !5E1
bs i

2
~t i 21/22t i 11/2!. ~12!

The evolution rules can be stated as follows: Ifa is positive,
a particle tends to move downhill, and a hole uphill. Ifb is
positive, a local peak (̀ ) tends to transform into a valle
(~) if a particle resides on it, while local valleys tend
become peaks in the presence of holes. Changing the sig
a andb reverses these tendencies. As a result, the natur
the steady state is sensitive to the sign ofa[ab. As we will
see below, ifa is positive, the exchanges ofs andt spins in
Eq. ~12! act in concert to promote segregation of both s
cies of spins, ultimately resulting in a phase-separated s
This is the unstable case of the LR model—the case of
mary interest in this paper. By contrast ifa is negative,
‘‘easy’’ s and t moves produce opposing tendencies, a
hence result in a fluctuating but on-average spatially hom
geneous state—the stable case of the LR model. The ca
lations of Crowley@6# for settling arrays of hydrodynami
cally interacting spheres and the discussion in@5# make it
clear that for sedimenting colloidal crystals it is the ‘‘u
stable’’ case that applies.

The other important parameters in the model are the m
netizationsMs[S is i /N, M t5S it i 11/2/N, both of which
are conserved by the dynamics.

B. Symmetric case: Hamiltonian and detailed balance

We now consider thesymmetric caseof the LR model,
which is defined by the vanishing of the magnetizations

Ms5M t50, ~13!

and the following relationship between coupling constants
Eq. ~12!:
il-

-

-

of
of

-
te.
i-

d
-
u-

g-

n

b

E
5

a

D
. ~14!

SinceE,D.0, it is clear that Eq.~14! is a special case of the
unstableLR model. We show below that when condition
~13! and~14! are met, it is possible to find a HamiltonianH
such that the condition of detailed balance is satisfied w
invariant measure exp(2bH).

Since the motion ofs particles is determined by the loca
tilt t, we may think of thes particles as moving in a poten
tial landscape provided by thet ’s ~Fig. 1!. With this in mind,
we define the height at sitek by

hk$t%5(
j 51

k

t j 21/2. ~15!

With periodic boundary conditions (sN1 i5s i ;tN1 i 21/2
5t i 21/2), the zero-net-tilt conditionM t50 implies hN1k
5hk . We associate a potential energy proportional tohksk
with site k, and write the Hamiltonian

H5e(
k51

N

hk$t%sk ~16!

to describe the total energy of thes particles in the land-
scape derived from thet particles.

In view of the symmetric role played bys ’s andt ’s in the
symmetric model, we may equally ask for the potential e
ergy of t particles in the landscape provided by thes par-
ticles. The corresponding Hamiltonian is then

G5e(
k51

N

gk21/2$s%tk21/2 ~17!

where the heightg is given by

gk11/2$s%5(
j 51

k

s j . ~18!

FIG. 1. The phase-separated state of the 1D lattice modelT
50 is shown.s andt variables are shown as circles and squar
respectively, withs,t511 (21) shown filled~empty!. The con-
figuration of the corresponding height model is also shown. In
faces betweens511 and21 are located atA andA8, and those
betweent511 and21 are atB andB8.
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When the heightshk and gk21/2 are written out in terms of
t j ’s and s j ’s, respectively, the HamiltoniansH and G are
seen to involve very nonlocal couplings:

H5e(
k51

N

(
j 51

k

t j 21/2sk , ~19!

G5e(
k52

N

(
j 51

k21

s jtk21/2. ~20!

We observe that

H1G5eMsM t ~21!

and, since each ofMs and M t vanishes in the symmetri
case owing to the zero-tilt condition, we haveH52G. Thus
the Hamiltonians corresponding to the two pictures, i.e.s
particles in a t landscape orvice versaare completely
equivalent. We will mostly useH for further work.

We now show that the steady state of the symme
model defined by Eqs.~13! and~14! satisfies the condition o
detailed balance and that the stationary measure is give
e2bH whereb is the inverse temperatureT21, with be given
by Eq. ~27! below. To this end, let us ask for the changes
energyDE(s i↔s i 11) of H when spinss i and s i 11 are
interchanged, andDE(t i 21/2↔t i 11/2) in H when spins
t i 21/2 andt i 11/2 are interchanged. ForiÞN, it is straightfor-
ward to see that

DE~s i↔s i 11!5et i 11/2~s i2s i 11!, ~22!

DE~t i 21↔t i 11!5es i~t i 21/22t i 11/2!. ~23!

In fact, Eqs.~22! and~23! are valid fori 5N as well, as can
be verified on recalling thatsN115s1 , tN11/25t1/2 and
using the zero-tilt conditionsMs5M t50 while computing
energy changes.

Consider the configurationCs i ,s i 11
obtained from a con-

figuration C on exchanging two neighborings spins—an
elementary kinetic move in the model. The condition of d
tailed balance is then

W~C→Cs i ,s i 11
!

W~Cs i ,s i 11
→C!

5
mSS~Cs i ,s i 11

!

mSS~C!
, ~24!

wheremSS(C) is the steady-state measure for configurat
C. To verify that

mSS~C!5e2bH(C), ~25!

we use Eqs.~12! and ~22! to obtain

D2aXi

D1aXi
5e22beXi ~26!

where we have definedXi[1/2t i 11/2(s i2s i 11). Noting that
Xi561, we see that Eq.~26! is satisfied provided

be5
1

2
ln S D1a

D2aD . ~27!
c

by

-

n

In order for the measure to be valid under interchanges
adjacentt ’s (t i 21/2↔t i 11/2), similar reasoning leads to th
condition

be5
1

2
ln S E1b

E2bD . ~28!

In the symmetric case of the LR model, Eq.~14! holds, and
so Eqs.~27! and ~28! are consistent. Thus the condition o
detailed balance holds with the equilibrium measure~25!.

It is appropriate to recall that the three-species mode
Evanset al. @7# also obeys the condition of detailed balan
in the symmetric case. There too the Hamiltonian has infin
ranged interactions, but does not have as transparent a
terpretation as Eq.~16!.

C. Symmetric case: Thermodynamic properties
and strong phase separation

Since the condition of detailed balance holds in the sy
metric case of the minimal LR model, the steady state c
responds to the thermal equilibrium state with Hamiltoni
H. The thermodynamic properties of the system can
found, in principle, using equilibrium statistical mechanic
A calculation can be carried out in the grand canonical
semble in the limitN→`. The resulting state exhibits stron
phase separation.

The HamiltonianH @Eq. ~16!# describes spinssk in a
site-dependent magnetic fieldehk , which is itself a dynami-
cal variable. Equivalently, in the lattice-gas description@as-
sociating an occupation variablenk51/2(11sk)], it de-
scribes particles with a hard core constraint in a poten
well of depth ehk . The ground state ofH is obtained by
arranging thet spins~which determine the heightshk) so as
to form as deep a potential well as possible, and then arra
ing thes particles at the bottom of the well~Fig. 1!. A spin
configuration which corresponds to this choice is

tk21/2521 for k51, . . . ,N/2

51 for k5
N

2
11, . . . ,N,

sk51 for k5N/4, . . . ,3N/4

521 for k51, . . . ,N/421

and k53N/411, . . . ,N. ~29!

Each spin species exhibits complete phase separation in
ground state. The ground state energy is straightforward
compute, and we find

EG.2
eN2

8
. ~30!

Notice the quadratic dependence ofEG on N, which is an
outcome of the infinite-ranged interactions inH @Eq. ~30!#.
As explained below, this unusual superextensive behavio
the energy is ultimately the feature responsible for the p
nomenon of strong phase separation, namely the contin
existence and stability of the phase-separated state at a
nite temperatures.
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At T50, phase separation is complete and there is a s
boundary between regions of positive and negative spin
each species. LetA and A8 be the locations of theT50
interface between regions withs51 ands521, and letB
andB8 be the locations of interfaces separating regions w
t51 andt521 ~Fig. 1!. The effect of raising the tempera
ture to a finite valueT is to smear out the interfacial zone
aroundA, A8, B, andB8 ~Fig. 2!. To address this quantita
tively, let us turn to the evaluation of thermodynamic pro
erties.

The calculation can be carried out most easily in a gra
ensemble in which the total magnetizationsMs andM t are
not held fixed. The corresponding grand partition function

Z[ (
$s%,$t%

e2b(H2EG)5 (
$s%$t%

e2be(
k

hk(sk2sk
0), ~31!

wheresk
0 denotes the value ofsk in the ground state. The

key observation that allows the calculation to be perform
is that near thes interfacesA and A8, the field hk($t%) is
essentially fixed at itsT50 valuehk

0 ; deviations are of orde
exp@2beN/4# as explained below, and so are utterly neg
gible in the thermodynamic limit. Likewise, in the vicinity o
the t interfacesB andB8, the s spins are frozen to theirT
50 values, and sogk($s%)5gk

0 . To proceed, let us divide
the system into four equal partsRA , RB , RA8 , RB8 , where
regionRA consists of theN/4 spins of each of the two spe
cies centered aroundA. Other regions are defined similarly
centered aroundB, A8, and B8. Evidently, with negligible
error we may sethk($t%)5hk

0 in regionsRA and RA8 , and
setgk($s%)5gk

0 in regionsRB andRB8 . The partition func-
tion Z can then be written as the product of four term
ZA , ZB , ZA8 , ZB8 , where, for instance,

ZA5(
$s%

e2be (
kPRA

hk
0(sk2sk

0), ~32!

ZB5(
$t%

e2be (
kPRB

gk11/2
0 (tk11/22tk11/2

0 ). ~33!

FIG. 2. Typical configurations of the unstable LR model atT
Þ0 are shown. The meaning of the symbols is as in Fig. 1. Ph
separation persists, but there are particle-hole excitations of
species near the corresponding interfaces.
rp
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Each of these factorizes into single-site partition functio
and can be evaluated straightforwardly. Recalling thathk

0

varies linearly withk near theT50 interface locationkA ,
we find

ZA5 )
kPRA

~11e22beuk2kAu!. ~34!

In the thermodynamic limit, we obtain

ZA5K~e22be!, ~35!

whereK(y)[)k52`
` (11yuku) is a generating function tha

arises in the theory of partitions@25#. Evidently, each of
ZB , ZA8 , andZB8 equals the same quantity as well, so th
Z5$K@exp(22be)#%4.

It is worth pausing to comment on the unusual size
pendences of various quantities. The ground state energyEG
is proportional toN2, a superextensive dependence. This h
its origin in the infinite-ranged interactions inH. Further,
with energies measured from the ground state value, the
tition function approaches anN-independent limit. Thus the
total change in free energy and entropy away fromT50
remain finite in the thermodynamic limit, i.e., they are n
extensive. This reflects the fact that the only effect of rais
the temperature is to broaden the interfacial region betw
phases, which essentially affects only a finite number
sites.

In fact, an explicit calculation of the broadened interfac
profile can be carried out in the grand ensemble. For
stance, nearA we have

^sk&5tanhbehk
0 , ~36!

wherehk5(k2kA). We see that̂sk& deviates substantially
from 1 only in a region whereubehku&1, or

uk2kAu,T/e. ~37!

For sitesk such thatuk2kAu@T/e, the deviation from61 is
'2exp(22beuk2kAu) which vanishes rapidly. We see tha
the primary effect of temperature is to smear out the int
faces. The formation of ‘‘droplets’’ far from the interfaces
prohibitively costly in energy, and hence the probability di
down exponentially. Recalling that the separation of the t
s51→21 interfaces isN/2, in the thermodynamic limit
N→`, we see that only a vanishing fraction of spins~those
close to the interfaces! deviate from values arbitrarily clos
to 1 and21. In this sense, phase separation remains c
plete and cannot be effaced at any finite temperatureT, i.e.,
we have strong phase separation.

These results obtained in the grand ensemble provid
qualitative, if not quantitative, guide to the thermodynam
properties of the system in whichMs andM t are held fixed.
The customary equivalence between ensembles is not o
ously valid any longer, as particle-hole excitations are ess
tially confined to a finite region of width proportional toT,
which does not increase asN→`. Thus the difference be
tween observables calculated in the two ensembles is
pected to remain of order unity, and not die out in theN
→` limit @26#. Interestingly, the calculation of the partitio
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function, though not the profile, has been carried out for
three-species model within a constant-species-number
semble@7#.

The stability of the strongly phase-separated state can
be understood in terms of kinetics. In the ground state
rangement of Fig. 1, eachs spin finds itself in a uniform
field produced by thet spins. Consider moving a spin over
macroscopic distance—say as511 spin fromA8 to A, via
B. The movement fromA8 to B may be viewed as an act
vation process as the spin in question has to overcom
potential barrier of magnitudeeN/4 to reachB; beyond that,
in the regionBA, the motion is ballistic as thet-induced
field helps it along. The rate-limiting step is thus theA8
→B activation. At temperatureT, the relevant time scale i
of the order oftCB;exp(eN/4T) which diverges rapidly as
N→`. Thus, in the thermodynamic limit, a rearrangement
the SPS state is not possible; the only effect of
temperature-assisted motion is to move a fews51 spins
near the interface into thes521 rich region and vice versa
but such penetration does not proceed far in view of
restoring fields. Defining the penetration depthDk as that
over which the activation time falls by a factor of 1/e, we
estimateDk5T/e, in agreement with Eq.~37! which was
based on the spatial decay of the interfacial profile.

D. Coarsening

Now imagine that Fig. 1 representedhalf the system, and
that the other half was identical in structure. This wou
amount to a system that had phase-separated intofour mac-
roscopic domains, each of sizeN/8. For this state to procee
towards full phase separation, the two1 domains, each a
the bottom of a valley, must merge. The rate-limiting st
can again be taken to be the movement of a1 from the edge
of an all 21 region to the top of a hill, i.e., a distanceN/8.
Once this comes to pass, the two domains of lengthN/4 will
rapidly merge to give one domain of lengthN/2. The time
for this, which is the time for complete phase separation
a system of sizeN, can be seen from the argument in Se
III C to scale as exp(eN/8T). This tells us that the characte
istic domain size grows logarithmically in time, as stated
Sec. I.

The time required for the reverse process~from a two-
domain to a four-domain state! scales as;exp@(N/4T)#,
which is overwhelmingly larger than the 4→2 coarsening
time. This is true at all scales, and the transition from
2n-domain state to one withn domains is much more rapi
than the reverse. Thus the transition from a statistically
mogeneously mixed state to the equilibrium phase-separ
state is irreversible, even though it occurs slowly.

The coarsening process was studied@7# both numerically
in the 3-species model and within a mean-field approxim
tion for a related ‘‘toy’’ model. The typical domain size wa
found to grow logarithmically in time. The arguments give
above are consistent with this.

E. Nonsymmetric case

We now address the nature of the steady state for arbit
values ofMs andM t . Away from Ms5M t50 the problem
is no longer described in terms of the equilibrium state o
e
n-

so
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long-ranged Hamiltonian; nevertheless we will argue bel
that the system continues to exhibit strong phase separa

It is useful to definex andy as the density of up spins o
the s and t types. We havex51/2(11Ms /N) and y
51/2(11M t /N). If x and y are small enough that 2x1y
,1, the steady state is of the type shown in Fig. 3~a!, with
each of thes and t species showing phase separation, b
with basically no spatial overlap of thes51 andt51 re-
gions. A useful way to characterize this state is through
sequence of interfaces, viz.A•••B8•••BA8•••, where•••
denotes a macroscopic stretch of the system. HereA(B)
separates an up-spin region ofs(t) spins on the right, from
the corresponding down-spin regions, whileA8 andB8 sepa-
rate the opposite regions. Trial states of the ty
A•••B8•••B•••A8••• are seen to approach the nonoverla
ping state on a time scale of ordert! where lnt! is less than
but of the order of the smaller ofeNx/T andeNy/T. Once
the nonoverlapping steady state has been reached,s and t
spins can still be cycled around by activation proces
acrossA8A andA8A, respectively~Fig. 3!, but such cycling
around does not change the character of the state.

Now consider increasingy, keepingx fixed. The number
of spins in the stretch betweenB8 andA is N(12x2y), and
once this drops belowNx, the predominant activation pro
cess occurs over this stretch. Thus the no-overlap stat
Fig. 3~a! is unstable towards a state of the type shown in F
3~b!, once 2x1y exceeds unity. In this steady state, activ
tion processes in a finite system lead to small currents os
andt spins, of magnitude

Js5a1 exp~2el AB8 /T!2a2 exp~2el A8B8 /T!, ~38!

Jt5a3 exp~2el BA /T!2a4 exp~2el B8A /T!, ~39!

wherea1 ,a2 ,a3 ,a4 are prefactors of order unity andl AB8 is
the separation of interfacesA and B8, and otherl ’s are
defined similarly. Since the differencel A8B82l AB8 is posi-
tive and grows proportionally toN, we may drop the second
term on the right of Eq.~38!. In steady state we must hav
Js5Jt , which then leads to (a11a4) exp(2el AB8 /T)
.a3 exp(2el BA /T) or

l AB85l BA1terms of order unity. ~40!

Thus,A is very close to the halfway position in stretchBB8.
The overlapping stretchBA8 is a fraction d51/2(2x1y

FIG. 3. Typical configurations are depicted away from the sy
metric case in the limit of vanishing noise.~a! If the fraction ofs
511 andt511 spins is low enough, interfacesA8 and B coin-
cide. ~b! If the fraction ofs511 spins is high enough, the inter
faceB8 lies halfway betweenA andA8.
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21) of the whole length. On settingx5y51/2, we recover
d51/4 in agreement with the results of the equilibriu
analysis of Sec. III C.

Analogously, keepingy fixed and increasingx we con-
clude that for 2y1x.1, the steady state i
A•••B•••A8•••B8••• with B8 betweenA8 and A and an
overlapping stretch of length 1/2N(2y1x21). Finally, un-
der x→(12x), y→(12y) we arrive at the condition for
overlap of negative spins.

In short, strong phase separation persists even away
the symmetric point of the LR model. In general, two typ
of steady states, both phase separated, are possible a
picted in Fig. 3. In the overlapping case, there is general
current in a finite system, but this vanishes exponentia
with system size. While we have explored the effects of
viating from the symmetric case by moving away from t
half-filling condition Eq.~13!, without altering the condition
~14! on the rates, another way to make the system nons
metric is to violate the latter condition. We have not explor
this in detail, but expect that the phenomenon of SPS
persist in this case also so long asab.0.

IV. DETAILED BALANCE AND STRONG PHASE
SEPARATION IN THE CONTINUUM LIMIT

The continuum model of Sec. II, in the casel2l3,0 in
Eq. ~6!, is linearly unstable. One way to deal with this inst
bility is to resort, as we have done above, to a lattice mo
in which the variables are naturally bounded. An alternat
way is to ask what nonlinear terms added to Eq.~6! for
l2l3,0 would arrest the unstable growth@22#. To do this,
we work in the detailed-balance limit of the lattice mod
start with the Hamiltonian~16!, and construct the corre
sponding continuum Ginzburg-Landau free-energy fu
tional. We shall see below that this functional will give ris
to dynamical equations with the same linear instability as
Eq. ~6! with l2l3,0, but containing nonlinearities whic
prevent unbounded growth.

The derivation is straightforward, as the condition of d
tailed balance allows us to proceed as in any equilibri
statistical mechanics problem. The Ginzburg-Landau fr
energy functionalF@s,t# for our system, i.e., the effectiv
Hamiltonian for a description in terms of the coarse-grain
fields $s(x),t(x)% of Sec. II D, may be written asU2TS,
where U is the energy~16! in the continuum limit,T the
temperature, andS the entropy obtained by summing over a
microscopic configurations$s i ,t i% subject to a fixed coarse
grained configuration$s(x),t(x)%. Sinces i andt i are Ising
variables,S can be found from a standard Bragg-William
construction. Thus,

F@s,t#5eE
0

L

dxE
0

x

dx8s~x!t~x8!

1TE
0

L

dx (
m5t(x),s(x)

F11m

2
ln

11m

2

1
12m

2
ln

12m

2 G , ~41!
m

de-
a
y
-

-
d
ll

el
e

,

-

n

-

-

d

where x is measured in units of the lattice spacing and
hence dimensionless. The partition function is th
*@ds#@dt#exp(2F/T).

Then the usual, purely dissipative,conserving time-
dependent Ginzburg Landau equations of motion gener
by Eq. ~41!, i.e.,

] ts5Ls]x
2 dF

ds
1hs ~42!

and likewise fort, turn out to be precisely

] ts5Ls~T]x
2 tanh21s1e]xt!1hs ;

] tt5Lt~T]x
2 tanh21t2e]xs!1ht . ~43!

Here Ls ,Lt are mobilities andhs ,ht are noise sources
with variances proportional to the corresponding mobilitie
It is evident that Eqs.~43! and ~10! are identical in the lin-
earized limit, if we make the identificationl25Lse, l35
2Lte. This corresponds to the linearly unstable limit of E
~6!, in consonance with the fact that the detailed balan
limit of the lattice model was derived in precisely that cas

We should thus be able to gain some insight into SPS
looking at the steady states of Eq.~43!. The simplest of these
are the zero current states, which satisfy

]xP2tanhQ50,

]xQ1tanhP50, ~44!

where
Q[tanh21f, P[tanh21c. ~45!

Thespatialdevelopment ofP andQ with respect tox is like
a Hamiltonian dynamics, conserving the ‘‘energy’’

E~P,Q!5 ln~coshP coshQ!. ~46!

This leads to closed orbits in theP2Q or c2f plane, i.e.,
regions of largec and smallf followed by the opposite.
These are spatially multidomain states which will not evo
further in the absence of noise.

V. SUMMARY AND DISCUSSION

A. Summary

In summary, we have constructed continuum and latt
models to describe the physics of steadily sedimenting
loidal crystals or, more generally, of a crystal driven throu
a dissipative medium. The models display two broadly d
tinct types of behavior, termed ‘‘stable’’ and ‘‘unstable,
depending on the sign of a parameter. We have concentr
on the unstable case and shown, through a mapping
one-dimensional lattice model, that italwaysdisplays phase
separation, a phenomenon which we call strong phase s
ration. This phase separation and the fact that it persists a
temperatures can be understood, in general, in terms of
riers to remixing which grow with system size. The barrie
are erected by the system in the course of its evolution,
result in domain sizes growing as the logarithm of the tim
In a particular limit, the detailed balance condition hold
allowing us to write the steady state distribution in the eq
librium form exp(2bH), and to calculate density profile
exactly. Here H involves long-ranged interactions eve
though the model has strictly local dynamics. This lon
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ranged character of interactions inH is responsible for the
phase separation in this one-dimensional system, and the
that it persists at all temperatures.

B. Experimental tests

Finally, let us turn to the possibility of testing our resu
in experiments. We have demonstrated strong phase se
tion in a one-dimensionalmodel system. It seems highl
likely, therefore, that the same phenomenon will take pl
in the experimental systems which inspired our mod
namely, steadily sedimenting crystalline suspensions in,
example, the two-dimensional geometry described in Se
A good candidate system is a charge-stabilized crystal
array of polystyrene spheres with radius in the micron ran
The lattice spacing of the crystal should be neither so la
that hydrodynamic effects~proportional to the ratio of par
ticle size to interparticle spacing! are negligible, nor so smal
that the flow is choked. This will ensure that apprecia
hydrodynamic flow takes place between the spheres, giv
rise to the strain-dependent mobilities@6# that are used in Eq
~4!. If the system parameters are as in@27#, the Reynolds
number will be negligible, as required by our neglect of
ertia, and the Peclet number large. Note that our model e
tions~4! were formulated to describe the nature of distortio
about a single crystalline domain. In particular, the insta
ity towards clumping takes place only on large enou
-

s.
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e
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r
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e
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e

e
g

-
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s
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h

length scales. In a polycrystalline sample, if the size of
crystallites is too small, terms from the elastic energy in E
~4! could dominate instead. In addition, it is important th
the sedimentation be steady, a requirement best me
working in the fluidized-bed geometry in which the particl
constituting the crystal are on average at rest in the lab
tory frame of reference, and the fluid flows vertically u
wards past them. We would recommend starting with
suspension in the fully sedimented state, and then switch
on the upward flow. Observations in@28# suggest that
strongly charge-stabilized crystalline suspensions app
stable whereas suspensions in a fluid state display the C
ley instability in a visible manner. We suspect that the ins
bility is present even in the crystalline suspensions, bu
masked either by finite crystallite size or by the logarithm
cally slow coarsening of domains. We predict that care
measurements of the time evolution of the static struct
factor, using particle-imaging or ultrasmall-angle scatter
techniques, should reveal a weak large-scale modulatio
the particle concentration, with characteristic wave vec
normal to the sedimentation direction and decreasing lo
rithmically in time.
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